@inproceedings{asada-etal-2017-extracting,
title = "Extracting Drug-Drug Interactions with Attention {CNN}s",
author = "Asada, Masaki and
Miwa, Makoto and
Sasaki, Yutaka",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "{B}io{NLP} 2017",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2302/",
doi = "10.18653/v1/W17-2302",
pages = "9--18",
abstract = "We propose a novel attention mechanism for a Convolutional Neural Network (CNN)-based Drug-Drug Interaction (DDI) extraction model. CNNs have been shown to have a great potential on DDI extraction tasks; however, attention mechanisms, which emphasize important words in the sentence of a target-entity pair, have not been investigated with the CNNs despite the fact that attention mechanisms are shown to be effective for a general domain relation classification task. We evaluated our model on the Task 9.2 of the DDIExtraction-2013 shared task. As a result, our attention mechanism improved the performance of our base CNN-based DDI model, and the model achieved an F-score of 69.12{\%}, which is competitive with the state-of-the-art models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="asada-etal-2017-extracting">
<titleInfo>
<title>Extracting Drug-Drug Interactions with Attention CNNs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masaki</namePart>
<namePart type="family">Asada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Miwa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yutaka</namePart>
<namePart type="family">Sasaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>BioNLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel attention mechanism for a Convolutional Neural Network (CNN)-based Drug-Drug Interaction (DDI) extraction model. CNNs have been shown to have a great potential on DDI extraction tasks; however, attention mechanisms, which emphasize important words in the sentence of a target-entity pair, have not been investigated with the CNNs despite the fact that attention mechanisms are shown to be effective for a general domain relation classification task. We evaluated our model on the Task 9.2 of the DDIExtraction-2013 shared task. As a result, our attention mechanism improved the performance of our base CNN-based DDI model, and the model achieved an F-score of 69.12%, which is competitive with the state-of-the-art models.</abstract>
<identifier type="citekey">asada-etal-2017-extracting</identifier>
<identifier type="doi">10.18653/v1/W17-2302</identifier>
<location>
<url>https://aclanthology.org/W17-2302/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>9</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extracting Drug-Drug Interactions with Attention CNNs
%A Asada, Masaki
%A Miwa, Makoto
%A Sasaki, Yutaka
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S BioNLP 2017
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F asada-etal-2017-extracting
%X We propose a novel attention mechanism for a Convolutional Neural Network (CNN)-based Drug-Drug Interaction (DDI) extraction model. CNNs have been shown to have a great potential on DDI extraction tasks; however, attention mechanisms, which emphasize important words in the sentence of a target-entity pair, have not been investigated with the CNNs despite the fact that attention mechanisms are shown to be effective for a general domain relation classification task. We evaluated our model on the Task 9.2 of the DDIExtraction-2013 shared task. As a result, our attention mechanism improved the performance of our base CNN-based DDI model, and the model achieved an F-score of 69.12%, which is competitive with the state-of-the-art models.
%R 10.18653/v1/W17-2302
%U https://aclanthology.org/W17-2302/
%U https://doi.org/10.18653/v1/W17-2302
%P 9-18
Markdown (Informal)
[Extracting Drug-Drug Interactions with Attention CNNs](https://aclanthology.org/W17-2302/) (Asada et al., BioNLP 2017)
ACL