@inproceedings{lever-jones-2017-painless,
title = "Painless Relation Extraction with Kindred",
author = "Lever, Jake and
Jones, Steven",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "{B}io{NLP} 2017",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2322",
doi = "10.18653/v1/W17-2322",
pages = "176--183",
abstract = "Relation extraction methods are essential for creating robust text mining tools to help researchers find useful knowledge in the vast published literature. Easy-to-use and generalizable methods are needed to encourage an ecosystem in which researchers can easily use shared resources and build upon each others{'} methods. We present the Kindred Python package for relation extraction. It builds upon methods from the most successful tools in the recent BioNLP Shared Task to predict high-quality predictions with low computational cost. It also integrates with PubAnnotation, PubTator, and BioNLP Shared Task data in order to allow easy development and application of relation extraction models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lever-jones-2017-painless">
<titleInfo>
<title>Painless Relation Extraction with Kindred</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jake</namePart>
<namePart type="family">Lever</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Jones</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>BioNLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Relation extraction methods are essential for creating robust text mining tools to help researchers find useful knowledge in the vast published literature. Easy-to-use and generalizable methods are needed to encourage an ecosystem in which researchers can easily use shared resources and build upon each others’ methods. We present the Kindred Python package for relation extraction. It builds upon methods from the most successful tools in the recent BioNLP Shared Task to predict high-quality predictions with low computational cost. It also integrates with PubAnnotation, PubTator, and BioNLP Shared Task data in order to allow easy development and application of relation extraction models.</abstract>
<identifier type="citekey">lever-jones-2017-painless</identifier>
<identifier type="doi">10.18653/v1/W17-2322</identifier>
<location>
<url>https://aclanthology.org/W17-2322</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>176</start>
<end>183</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Painless Relation Extraction with Kindred
%A Lever, Jake
%A Jones, Steven
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S BioNLP 2017
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F lever-jones-2017-painless
%X Relation extraction methods are essential for creating robust text mining tools to help researchers find useful knowledge in the vast published literature. Easy-to-use and generalizable methods are needed to encourage an ecosystem in which researchers can easily use shared resources and build upon each others’ methods. We present the Kindred Python package for relation extraction. It builds upon methods from the most successful tools in the recent BioNLP Shared Task to predict high-quality predictions with low computational cost. It also integrates with PubAnnotation, PubTator, and BioNLP Shared Task data in order to allow easy development and application of relation extraction models.
%R 10.18653/v1/W17-2322
%U https://aclanthology.org/W17-2322
%U https://doi.org/10.18653/v1/W17-2322
%P 176-183
Markdown (Informal)
[Painless Relation Extraction with Kindred](https://aclanthology.org/W17-2322) (Lever & Jones, BioNLP 2017)
ACL