@inproceedings{mohan-etal-2017-deep,
    title = "Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs",
    author = "Mohan, Sunil  and
      Fiorini, Nicolas  and
      Kim, Sun  and
      Lu, Zhiyong",
    editor = "Cohen, Kevin Bretonnel  and
      Demner-Fushman, Dina  and
      Ananiadou, Sophia  and
      Tsujii, Junichi",
    booktitle = "Proceedings of the 16th {B}io{NLP} Workshop",
    month = aug,
    year = "2017",
    address = "Vancouver, Canada,",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-2328/",
    doi = "10.18653/v1/W17-2328",
    pages = "222--231",
    abstract = "We describe a Deep Learning approach to modeling the relevance of a document{'}s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated probability of the document{'}s relevance to the query. Despite the small amount of training data, this approach produces a more robust predictor than computing similarities between semantic vector representations of the query and document, and also results in significant improvements over traditional IR text factors. In the future, we plan to explore its application in improving PubMed search."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mohan-etal-2017-deep">
    <titleInfo>
        <title>Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sunil</namePart>
        <namePart type="family">Mohan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Nicolas</namePart>
        <namePart type="family">Fiorini</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sun</namePart>
        <namePart type="family">Kim</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Zhiyong</namePart>
        <namePart type="family">Lu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 16th BioNLP Workshop</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kevin</namePart>
            <namePart type="given">Bretonnel</namePart>
            <namePart type="family">Cohen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Dina</namePart>
            <namePart type="family">Demner-Fushman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sophia</namePart>
            <namePart type="family">Ananiadou</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Junichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Vancouver, Canada,</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We describe a Deep Learning approach to modeling the relevance of a document’s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated probability of the document’s relevance to the query. Despite the small amount of training data, this approach produces a more robust predictor than computing similarities between semantic vector representations of the query and document, and also results in significant improvements over traditional IR text factors. In the future, we plan to explore its application in improving PubMed search.</abstract>
    <identifier type="citekey">mohan-etal-2017-deep</identifier>
    <identifier type="doi">10.18653/v1/W17-2328</identifier>
    <location>
        <url>https://aclanthology.org/W17-2328/</url>
    </location>
    <part>
        <date>2017-08</date>
        <extent unit="page">
            <start>222</start>
            <end>231</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs
%A Mohan, Sunil
%A Fiorini, Nicolas
%A Kim, Sun
%A Lu, Zhiyong
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the 16th BioNLP Workshop
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F mohan-etal-2017-deep
%X We describe a Deep Learning approach to modeling the relevance of a document’s text to a query, applied to biomedical literature. Instead of mapping each document and query to a common semantic space, we compute a variable-length difference vector between the query and document which is then passed through a deep convolution stage followed by a deep regression network to produce the estimated probability of the document’s relevance to the query. Despite the small amount of training data, this approach produces a more robust predictor than computing similarities between semantic vector representations of the query and document, and also results in significant improvements over traditional IR text factors. In the future, we plan to explore its application in improving PubMed search.
%R 10.18653/v1/W17-2328
%U https://aclanthology.org/W17-2328/
%U https://doi.org/10.18653/v1/W17-2328
%P 222-231
Markdown (Informal)
[Deep Learning for Biomedical Information Retrieval: Learning Textual Relevance from Click Logs](https://aclanthology.org/W17-2328/) (Mohan et al., BioNLP 2017)
ACL