@inproceedings{maharana-yetisgen-2017-clinical,
title = "Clinical Event Detection with Hybrid Neural Architecture",
author = "Maharana, Adyasha and
Yetisgen, Meliha",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "{B}io{NLP} 2017",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2345/",
doi = "10.18653/v1/W17-2345",
pages = "351--355",
abstract = "Event detection from clinical notes has been traditionally solved with rule based and statistical natural language processing (NLP) approaches that require extensive domain knowledge and feature engineering. In this paper, we have explored the feasibility of approaching this task with recurrent neural networks, clinical word embeddings and introduced a hybrid architecture to improve detection for entities with smaller representation in the dataset. A comparative analysis is also done which reveals the complementary behavior of neural networks and conditional random fields in clinical entity detection."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maharana-yetisgen-2017-clinical">
<titleInfo>
<title>Clinical Event Detection with Hybrid Neural Architecture</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adyasha</namePart>
<namePart type="family">Maharana</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meliha</namePart>
<namePart type="family">Yetisgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>BioNLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Event detection from clinical notes has been traditionally solved with rule based and statistical natural language processing (NLP) approaches that require extensive domain knowledge and feature engineering. In this paper, we have explored the feasibility of approaching this task with recurrent neural networks, clinical word embeddings and introduced a hybrid architecture to improve detection for entities with smaller representation in the dataset. A comparative analysis is also done which reveals the complementary behavior of neural networks and conditional random fields in clinical entity detection.</abstract>
<identifier type="citekey">maharana-yetisgen-2017-clinical</identifier>
<identifier type="doi">10.18653/v1/W17-2345</identifier>
<location>
<url>https://aclanthology.org/W17-2345/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>351</start>
<end>355</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Clinical Event Detection with Hybrid Neural Architecture
%A Maharana, Adyasha
%A Yetisgen, Meliha
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S BioNLP 2017
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F maharana-yetisgen-2017-clinical
%X Event detection from clinical notes has been traditionally solved with rule based and statistical natural language processing (NLP) approaches that require extensive domain knowledge and feature engineering. In this paper, we have explored the feasibility of approaching this task with recurrent neural networks, clinical word embeddings and introduced a hybrid architecture to improve detection for entities with smaller representation in the dataset. A comparative analysis is also done which reveals the complementary behavior of neural networks and conditional random fields in clinical entity detection.
%R 10.18653/v1/W17-2345
%U https://aclanthology.org/W17-2345/
%U https://doi.org/10.18653/v1/W17-2345
%P 351-355
Markdown (Informal)
[Clinical Event Detection with Hybrid Neural Architecture](https://aclanthology.org/W17-2345/) (Maharana & Yetisgen, BioNLP 2017)
ACL