@inproceedings{naik-etal-2017-extracting,
title = "Extracting Personal Medical Events for User Timeline Construction using Minimal Supervision",
author = "Naik, Aakanksha and
Bogart, Chris and
Rose, Carolyn",
editor = "Cohen, Kevin Bretonnel and
Demner-Fushman, Dina and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "{B}io{NLP} 2017",
month = aug,
year = "2017",
address = "Vancouver, Canada,",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2346",
doi = "10.18653/v1/W17-2346",
pages = "356--364",
abstract = "In this paper, we describe a system for automatic construction of user disease progression timelines from their posts in online support groups using minimal supervision. In recent years, several online support groups have been established which has led to a huge increase in the amount of patient-authored text available. Creating systems which can automatically extract important medical events and create disease progression timelines for users from such text can help in patient health monitoring as well as studying links between medical events and users{'} participation in support groups. Prior work in this domain has used manually constructed keyword sets to detect medical events. In this work, our aim is to perform medical event detection using minimal supervision in order to develop a more general timeline construction system. Our system achieves an accuracy of 55.17{\%}, which is 92{\%} of the performance achieved by a supervised baseline system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="naik-etal-2017-extracting">
<titleInfo>
<title>Extracting Personal Medical Events for User Timeline Construction using Minimal Supervision</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aakanksha</namePart>
<namePart type="family">Naik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Bogart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carolyn</namePart>
<namePart type="family">Rose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>BioNLP 2017</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada,</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe a system for automatic construction of user disease progression timelines from their posts in online support groups using minimal supervision. In recent years, several online support groups have been established which has led to a huge increase in the amount of patient-authored text available. Creating systems which can automatically extract important medical events and create disease progression timelines for users from such text can help in patient health monitoring as well as studying links between medical events and users’ participation in support groups. Prior work in this domain has used manually constructed keyword sets to detect medical events. In this work, our aim is to perform medical event detection using minimal supervision in order to develop a more general timeline construction system. Our system achieves an accuracy of 55.17%, which is 92% of the performance achieved by a supervised baseline system.</abstract>
<identifier type="citekey">naik-etal-2017-extracting</identifier>
<identifier type="doi">10.18653/v1/W17-2346</identifier>
<location>
<url>https://aclanthology.org/W17-2346</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>356</start>
<end>364</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Extracting Personal Medical Events for User Timeline Construction using Minimal Supervision
%A Naik, Aakanksha
%A Bogart, Chris
%A Rose, Carolyn
%Y Cohen, Kevin Bretonnel
%Y Demner-Fushman, Dina
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S BioNLP 2017
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada,
%F naik-etal-2017-extracting
%X In this paper, we describe a system for automatic construction of user disease progression timelines from their posts in online support groups using minimal supervision. In recent years, several online support groups have been established which has led to a huge increase in the amount of patient-authored text available. Creating systems which can automatically extract important medical events and create disease progression timelines for users from such text can help in patient health monitoring as well as studying links between medical events and users’ participation in support groups. Prior work in this domain has used manually constructed keyword sets to detect medical events. In this work, our aim is to perform medical event detection using minimal supervision in order to develop a more general timeline construction system. Our system achieves an accuracy of 55.17%, which is 92% of the performance achieved by a supervised baseline system.
%R 10.18653/v1/W17-2346
%U https://aclanthology.org/W17-2346
%U https://doi.org/10.18653/v1/W17-2346
%P 356-364
Markdown (Informal)
[Extracting Personal Medical Events for User Timeline Construction using Minimal Supervision](https://aclanthology.org/W17-2346) (Naik et al., BioNLP 2017)
ACL