Knowledge Base Completion: Baselines Strike Back

Rudolf Kadlec, Ondrej Bajgar, Jan Kleindienst


Abstract
Many papers have been published on the knowledge base completion task in the past few years. Most of these introduce novel architectures for relation learning that are evaluated on standard datasets like FB15k and WN18. This paper shows that the accuracy of almost all models published on the FB15k can be outperformed by an appropriately tuned baseline — our reimplementation of the DistMult model. Our findings cast doubt on the claim that the performance improvements of recent models are due to architectural changes as opposed to hyper-parameter tuning or different training objectives. This should prompt future research to re-consider how the performance of models is evaluated and reported.
Anthology ID:
W17-2609
Volume:
Proceedings of the 2nd Workshop on Representation Learning for NLP
Month:
August
Year:
2017
Address:
Vancouver, Canada
Editors:
Phil Blunsom, Antoine Bordes, Kyunghyun Cho, Shay Cohen, Chris Dyer, Edward Grefenstette, Karl Moritz Hermann, Laura Rimell, Jason Weston, Scott Yih
Venue:
RepL4NLP
SIG:
SIGREP
Publisher:
Association for Computational Linguistics
Note:
Pages:
69–74
Language:
URL:
https://aclanthology.org/W17-2609/
DOI:
10.18653/v1/W17-2609
Bibkey:
Cite (ACL):
Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. 2017. Knowledge Base Completion: Baselines Strike Back. In Proceedings of the 2nd Workshop on Representation Learning for NLP, pages 69–74, Vancouver, Canada. Association for Computational Linguistics.
Cite (Informal):
Knowledge Base Completion: Baselines Strike Back (Kadlec et al., RepL4NLP 2017)
Copy Citation:
PDF:
https://aclanthology.org/W17-2609.pdf