@inproceedings{glavas-etal-2017-cross,
title = "Cross-Lingual Classification of Topics in Political Texts",
author = "Glava{\v{s}}, Goran and
Nanni, Federico and
Ponzetto, Simone Paolo",
editor = {Hovy, Dirk and
Volkova, Svitlana and
Bamman, David and
Jurgens, David and
O{'}Connor, Brendan and
Tsur, Oren and
Do{\u{g}}ru{\"o}z, A. Seza},
booktitle = "Proceedings of the Second Workshop on {NLP} and Computational Social Science",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-2906/",
doi = "10.18653/v1/W17-2906",
pages = "42--46",
abstract = "In this paper, we propose an approach for cross-lingual topical coding of sentences from electoral manifestos of political parties in different languages. To this end, we exploit continuous semantic text representations and induce a joint multilingual semantic vector spaces to enable supervised learning using manually-coded sentences across different languages. Our experimental results show that classifiers trained on multilingual data yield performance boosts over monolingual topic classification."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="glavas-etal-2017-cross">
<titleInfo>
<title>Cross-Lingual Classification of Topics in Political Texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Federico</namePart>
<namePart type="family">Nanni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="given">Paolo</namePart>
<namePart type="family">Ponzetto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on NLP and Computational Social Science</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Svitlana</namePart>
<namePart type="family">Volkova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Bamman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Jurgens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brendan</namePart>
<namePart type="family">O’Connor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oren</namePart>
<namePart type="family">Tsur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="given">Seza</namePart>
<namePart type="family">Doğruöz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose an approach for cross-lingual topical coding of sentences from electoral manifestos of political parties in different languages. To this end, we exploit continuous semantic text representations and induce a joint multilingual semantic vector spaces to enable supervised learning using manually-coded sentences across different languages. Our experimental results show that classifiers trained on multilingual data yield performance boosts over monolingual topic classification.</abstract>
<identifier type="citekey">glavas-etal-2017-cross</identifier>
<identifier type="doi">10.18653/v1/W17-2906</identifier>
<location>
<url>https://aclanthology.org/W17-2906/</url>
</location>
<part>
<date>2017-08</date>
<extent unit="page">
<start>42</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-Lingual Classification of Topics in Political Texts
%A Glavaš, Goran
%A Nanni, Federico
%A Ponzetto, Simone Paolo
%Y Hovy, Dirk
%Y Volkova, Svitlana
%Y Bamman, David
%Y Jurgens, David
%Y O’Connor, Brendan
%Y Tsur, Oren
%Y Doğruöz, A. Seza
%S Proceedings of the Second Workshop on NLP and Computational Social Science
%D 2017
%8 August
%I Association for Computational Linguistics
%C Vancouver, Canada
%F glavas-etal-2017-cross
%X In this paper, we propose an approach for cross-lingual topical coding of sentences from electoral manifestos of political parties in different languages. To this end, we exploit continuous semantic text representations and induce a joint multilingual semantic vector spaces to enable supervised learning using manually-coded sentences across different languages. Our experimental results show that classifiers trained on multilingual data yield performance boosts over monolingual topic classification.
%R 10.18653/v1/W17-2906
%U https://aclanthology.org/W17-2906/
%U https://doi.org/10.18653/v1/W17-2906
%P 42-46
Markdown (Informal)
[Cross-Lingual Classification of Topics in Political Texts](https://aclanthology.org/W17-2906/) (Glavaš et al., NLP+CSS 2017)
ACL