@inproceedings{zang-wan-2017-towards,
title = "Towards Automatic Generation of Product Reviews from Aspect-Sentiment Scores",
author = "Zang, Hongyu and
Wan, Xiaojun",
editor = "Alonso, Jose M. and
Bugar{\'i}n, Alberto and
Reiter, Ehud",
booktitle = "Proceedings of the 10th International Conference on Natural Language Generation",
month = sep,
year = "2017",
address = "Santiago de Compostela, Spain",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-3526/",
doi = "10.18653/v1/W17-3526",
pages = "168--177",
abstract = "Data-to-text generation is very essential and important in machine writing applications. The recent deep learning models, like Recurrent Neural Networks (RNNs), have shown a bright future for relevant text generation tasks. However, rare work has been done for automatic generation of long reviews from user opinions. In this paper, we introduce a deep neural network model to generate long Chinese reviews from aspect-sentiment scores representing users' opinions. We conduct our study within the framework of encoder-decoder networks, and we propose a hierarchical structure with aligned attention in the Long-Short Term Memory (LSTM) decoder. Experiments show that our model outperforms retrieval based baseline methods, and also beats the sequential generation models in qualitative evaluations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zang-wan-2017-towards">
<titleInfo>
<title>Towards Automatic Generation of Product Reviews from Aspect-Sentiment Scores</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongyu</namePart>
<namePart type="family">Zang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaojun</namePart>
<namePart type="family">Wan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Alonso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Bugarín</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ehud</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santiago de Compostela, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Data-to-text generation is very essential and important in machine writing applications. The recent deep learning models, like Recurrent Neural Networks (RNNs), have shown a bright future for relevant text generation tasks. However, rare work has been done for automatic generation of long reviews from user opinions. In this paper, we introduce a deep neural network model to generate long Chinese reviews from aspect-sentiment scores representing users’ opinions. We conduct our study within the framework of encoder-decoder networks, and we propose a hierarchical structure with aligned attention in the Long-Short Term Memory (LSTM) decoder. Experiments show that our model outperforms retrieval based baseline methods, and also beats the sequential generation models in qualitative evaluations.</abstract>
<identifier type="citekey">zang-wan-2017-towards</identifier>
<identifier type="doi">10.18653/v1/W17-3526</identifier>
<location>
<url>https://aclanthology.org/W17-3526/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>168</start>
<end>177</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards Automatic Generation of Product Reviews from Aspect-Sentiment Scores
%A Zang, Hongyu
%A Wan, Xiaojun
%Y Alonso, Jose M.
%Y Bugarín, Alberto
%Y Reiter, Ehud
%S Proceedings of the 10th International Conference on Natural Language Generation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Santiago de Compostela, Spain
%F zang-wan-2017-towards
%X Data-to-text generation is very essential and important in machine writing applications. The recent deep learning models, like Recurrent Neural Networks (RNNs), have shown a bright future for relevant text generation tasks. However, rare work has been done for automatic generation of long reviews from user opinions. In this paper, we introduce a deep neural network model to generate long Chinese reviews from aspect-sentiment scores representing users’ opinions. We conduct our study within the framework of encoder-decoder networks, and we propose a hierarchical structure with aligned attention in the Long-Short Term Memory (LSTM) decoder. Experiments show that our model outperforms retrieval based baseline methods, and also beats the sequential generation models in qualitative evaluations.
%R 10.18653/v1/W17-3526
%U https://aclanthology.org/W17-3526/
%U https://doi.org/10.18653/v1/W17-3526
%P 168-177
Markdown (Informal)
[Towards Automatic Generation of Product Reviews from Aspect-Sentiment Scores](https://aclanthology.org/W17-3526/) (Zang & Wan, INLG 2017)
ACL