@inproceedings{stratos-2017-reconstruction,
title = "Reconstruction of Word Embeddings from Sub-Word Parameters",
author = "Stratos, Karl",
editor = "Faruqui, Manaal and
Schuetze, Hinrich and
Trancoso, Isabel and
Yaghoobzadeh, Yadollah",
booktitle = "Proceedings of the First Workshop on Subword and Character Level Models in {NLP}",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4119/",
doi = "10.18653/v1/W17-4119",
pages = "130--135",
abstract = "Pre-trained word embeddings improve the performance of a neural model at the cost of increasing the model size. We propose to benefit from this resource without paying the cost by operating strictly at the sub-lexical level. Our approach is quite simple: before task-specific training, we first optimize sub-word parameters to reconstruct pre-trained word embeddings using various distance measures. We report interesting results on a variety of tasks: word similarity, word analogy, and part-of-speech tagging."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stratos-2017-reconstruction">
<titleInfo>
<title>Reconstruction of Word Embeddings from Sub-Word Parameters</title>
</titleInfo>
<name type="personal">
<namePart type="given">Karl</namePart>
<namePart type="family">Stratos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Subword and Character Level Models in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manaal</namePart>
<namePart type="family">Faruqui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schuetze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabel</namePart>
<namePart type="family">Trancoso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yadollah</namePart>
<namePart type="family">Yaghoobzadeh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained word embeddings improve the performance of a neural model at the cost of increasing the model size. We propose to benefit from this resource without paying the cost by operating strictly at the sub-lexical level. Our approach is quite simple: before task-specific training, we first optimize sub-word parameters to reconstruct pre-trained word embeddings using various distance measures. We report interesting results on a variety of tasks: word similarity, word analogy, and part-of-speech tagging.</abstract>
<identifier type="citekey">stratos-2017-reconstruction</identifier>
<identifier type="doi">10.18653/v1/W17-4119</identifier>
<location>
<url>https://aclanthology.org/W17-4119/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>130</start>
<end>135</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reconstruction of Word Embeddings from Sub-Word Parameters
%A Stratos, Karl
%Y Faruqui, Manaal
%Y Schuetze, Hinrich
%Y Trancoso, Isabel
%Y Yaghoobzadeh, Yadollah
%S Proceedings of the First Workshop on Subword and Character Level Models in NLP
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F stratos-2017-reconstruction
%X Pre-trained word embeddings improve the performance of a neural model at the cost of increasing the model size. We propose to benefit from this resource without paying the cost by operating strictly at the sub-lexical level. Our approach is quite simple: before task-specific training, we first optimize sub-word parameters to reconstruct pre-trained word embeddings using various distance measures. We report interesting results on a variety of tasks: word similarity, word analogy, and part-of-speech tagging.
%R 10.18653/v1/W17-4119
%U https://aclanthology.org/W17-4119/
%U https://doi.org/10.18653/v1/W17-4119
%P 130-135
Markdown (Informal)
[Reconstruction of Word Embeddings from Sub-Word Parameters](https://aclanthology.org/W17-4119/) (Stratos, SCLeM 2017)
ACL