@inproceedings{barbieri-etal-2017-towards,
title = "Towards the Understanding of Gaming Audiences by Modeling Twitch Emotes",
author = "Barbieri, Francesco and
Espinosa-Anke, Luis and
Ballesteros, Miguel and
Soler-Company, Juan and
Saggion, Horacio",
editor = "Derczynski, Leon and
Xu, Wei and
Ritter, Alan and
Baldwin, Tim",
booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4402/",
doi = "10.18653/v1/W17-4402",
pages = "11--20",
abstract = "Videogame streaming platforms have become a paramount example of noisy user-generated text. These are websites where gaming is broadcasted, and allows interaction with viewers via integrated chatrooms. Probably the best known platform of this kind is Twitch, which has more than 100 million monthly viewers. Despite these numbers, and unlike other platforms featuring short messages (e.g. Twitter), Twitch has not received much attention from the Natural Language Processing community. In this paper we aim at bridging this gap by proposing two important tasks specific to the Twitch platform, namely (1) Emote prediction; and (2) Trolling detection. In our experiments, we evaluate three models: a BOW baseline, a logistic supervised classifiers based on word embeddings, and a bidirectional long short-term memory recurrent neural network (LSTM). Our results show that the LSTM model outperforms the other two models, where explicit features with proven effectiveness for similar tasks were encoded."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barbieri-etal-2017-towards">
<titleInfo>
<title>Towards the Understanding of Gaming Audiences by Modeling Twitch Emotes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Francesco</namePart>
<namePart type="family">Barbieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Espinosa-Anke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Ballesteros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Soler-Company</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Horacio</namePart>
<namePart type="family">Saggion</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Noisy User-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Videogame streaming platforms have become a paramount example of noisy user-generated text. These are websites where gaming is broadcasted, and allows interaction with viewers via integrated chatrooms. Probably the best known platform of this kind is Twitch, which has more than 100 million monthly viewers. Despite these numbers, and unlike other platforms featuring short messages (e.g. Twitter), Twitch has not received much attention from the Natural Language Processing community. In this paper we aim at bridging this gap by proposing two important tasks specific to the Twitch platform, namely (1) Emote prediction; and (2) Trolling detection. In our experiments, we evaluate three models: a BOW baseline, a logistic supervised classifiers based on word embeddings, and a bidirectional long short-term memory recurrent neural network (LSTM). Our results show that the LSTM model outperforms the other two models, where explicit features with proven effectiveness for similar tasks were encoded.</abstract>
<identifier type="citekey">barbieri-etal-2017-towards</identifier>
<identifier type="doi">10.18653/v1/W17-4402</identifier>
<location>
<url>https://aclanthology.org/W17-4402/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>11</start>
<end>20</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards the Understanding of Gaming Audiences by Modeling Twitch Emotes
%A Barbieri, Francesco
%A Espinosa-Anke, Luis
%A Ballesteros, Miguel
%A Soler-Company, Juan
%A Saggion, Horacio
%Y Derczynski, Leon
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%S Proceedings of the 3rd Workshop on Noisy User-generated Text
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F barbieri-etal-2017-towards
%X Videogame streaming platforms have become a paramount example of noisy user-generated text. These are websites where gaming is broadcasted, and allows interaction with viewers via integrated chatrooms. Probably the best known platform of this kind is Twitch, which has more than 100 million monthly viewers. Despite these numbers, and unlike other platforms featuring short messages (e.g. Twitter), Twitch has not received much attention from the Natural Language Processing community. In this paper we aim at bridging this gap by proposing two important tasks specific to the Twitch platform, namely (1) Emote prediction; and (2) Trolling detection. In our experiments, we evaluate three models: a BOW baseline, a logistic supervised classifiers based on word embeddings, and a bidirectional long short-term memory recurrent neural network (LSTM). Our results show that the LSTM model outperforms the other two models, where explicit features with proven effectiveness for similar tasks were encoded.
%R 10.18653/v1/W17-4402
%U https://aclanthology.org/W17-4402/
%U https://doi.org/10.18653/v1/W17-4402
%P 11-20
Markdown (Informal)
[Towards the Understanding of Gaming Audiences by Modeling Twitch Emotes](https://aclanthology.org/W17-4402/) (Barbieri et al., WNUT 2017)
ACL