@inproceedings{jang-etal-2017-improving,
title = "Improving Document Clustering by Removing Unnatural Language",
author = "Jang, Myungha and
Choi, Jinho D. and
Allan, James",
editor = "Derczynski, Leon and
Xu, Wei and
Ritter, Alan and
Baldwin, Tim",
booktitle = "Proceedings of the 3rd Workshop on Noisy User-generated Text",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4416",
doi = "10.18653/v1/W17-4416",
pages = "122--130",
abstract = "Technical documents contain a fair amount of unnatural language, such as tables, formulas, and pseudo-code. Unnatural language can bean important factor of confusing existing NLP tools. This paper presents an effective method of distinguishing unnatural language from natural language, and evaluates the impact of un-natural language detection on NLP tasks such as document clustering. We view this problem as an information extraction task and build a multiclass classification model identifying unnatural language components into four categories. First, we create a new annotated corpus by collecting slides and papers in various for-mats, PPT, PDF, and HTML, where unnatural language components are annotated into four categories. We then explore features available from plain text to build a statistical model that can handle any format as long as it is converted into plain text. Our experiments show that re-moving unnatural language components gives an absolute improvement in document cluster-ing by up to 15{\%}. Our corpus and tool are publicly available",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jang-etal-2017-improving">
<titleInfo>
<title>Improving Document Clustering by Removing Unnatural Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Myungha</namePart>
<namePart type="family">Jang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinho</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Allan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Noisy User-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leon</namePart>
<namePart type="family">Derczynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Technical documents contain a fair amount of unnatural language, such as tables, formulas, and pseudo-code. Unnatural language can bean important factor of confusing existing NLP tools. This paper presents an effective method of distinguishing unnatural language from natural language, and evaluates the impact of un-natural language detection on NLP tasks such as document clustering. We view this problem as an information extraction task and build a multiclass classification model identifying unnatural language components into four categories. First, we create a new annotated corpus by collecting slides and papers in various for-mats, PPT, PDF, and HTML, where unnatural language components are annotated into four categories. We then explore features available from plain text to build a statistical model that can handle any format as long as it is converted into plain text. Our experiments show that re-moving unnatural language components gives an absolute improvement in document cluster-ing by up to 15%. Our corpus and tool are publicly available</abstract>
<identifier type="citekey">jang-etal-2017-improving</identifier>
<identifier type="doi">10.18653/v1/W17-4416</identifier>
<location>
<url>https://aclanthology.org/W17-4416</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>122</start>
<end>130</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Document Clustering by Removing Unnatural Language
%A Jang, Myungha
%A Choi, Jinho D.
%A Allan, James
%Y Derczynski, Leon
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%S Proceedings of the 3rd Workshop on Noisy User-generated Text
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F jang-etal-2017-improving
%X Technical documents contain a fair amount of unnatural language, such as tables, formulas, and pseudo-code. Unnatural language can bean important factor of confusing existing NLP tools. This paper presents an effective method of distinguishing unnatural language from natural language, and evaluates the impact of un-natural language detection on NLP tasks such as document clustering. We view this problem as an information extraction task and build a multiclass classification model identifying unnatural language components into four categories. First, we create a new annotated corpus by collecting slides and papers in various for-mats, PPT, PDF, and HTML, where unnatural language components are annotated into four categories. We then explore features available from plain text to build a statistical model that can handle any format as long as it is converted into plain text. Our experiments show that re-moving unnatural language components gives an absolute improvement in document cluster-ing by up to 15%. Our corpus and tool are publicly available
%R 10.18653/v1/W17-4416
%U https://aclanthology.org/W17-4416
%U https://doi.org/10.18653/v1/W17-4416
%P 122-130
Markdown (Informal)
[Improving Document Clustering by Removing Unnatural Language](https://aclanthology.org/W17-4416) (Jang et al., WNUT 2017)
ACL