@inproceedings{li-etal-2017-reader,
title = "Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset",
author = "Li, Piji and
Bing, Lidong and
Lam, Wai",
editor = "Wang, Lu and
Cheung, Jackie Chi Kit and
Carenini, Giuseppe and
Liu, Fei",
booktitle = "Proceedings of the Workshop on New Frontiers in Summarization",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4512/",
doi = "10.18653/v1/W17-4512",
pages = "91--99",
abstract = "We investigate the problem of reader-aware multi-document summarization (RA-MDS) and introduce a new dataset for this problem. To tackle RA-MDS, we extend a variational auto-encodes (VAEs) based MDS framework by jointly considering news documents and reader comments. To conduct evaluation for summarization performance, we prepare a new dataset. We describe the methods for data collection, aspect annotation, and summary writing as well as scrutinizing by experts. Experimental results show that reader comments can improve the summarization performance, which also demonstrates the usefulness of the proposed dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2017-reader">
<titleInfo>
<title>Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Piji</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lidong</namePart>
<namePart type="family">Bing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wai</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on New Frontiers in Summarization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jackie</namePart>
<namePart type="given">Chi</namePart>
<namePart type="given">Kit</namePart>
<namePart type="family">Cheung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the problem of reader-aware multi-document summarization (RA-MDS) and introduce a new dataset for this problem. To tackle RA-MDS, we extend a variational auto-encodes (VAEs) based MDS framework by jointly considering news documents and reader comments. To conduct evaluation for summarization performance, we prepare a new dataset. We describe the methods for data collection, aspect annotation, and summary writing as well as scrutinizing by experts. Experimental results show that reader comments can improve the summarization performance, which also demonstrates the usefulness of the proposed dataset.</abstract>
<identifier type="citekey">li-etal-2017-reader</identifier>
<identifier type="doi">10.18653/v1/W17-4512</identifier>
<location>
<url>https://aclanthology.org/W17-4512/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>91</start>
<end>99</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset
%A Li, Piji
%A Bing, Lidong
%A Lam, Wai
%Y Wang, Lu
%Y Cheung, Jackie Chi Kit
%Y Carenini, Giuseppe
%Y Liu, Fei
%S Proceedings of the Workshop on New Frontiers in Summarization
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F li-etal-2017-reader
%X We investigate the problem of reader-aware multi-document summarization (RA-MDS) and introduce a new dataset for this problem. To tackle RA-MDS, we extend a variational auto-encodes (VAEs) based MDS framework by jointly considering news documents and reader comments. To conduct evaluation for summarization performance, we prepare a new dataset. We describe the methods for data collection, aspect annotation, and summary writing as well as scrutinizing by experts. Experimental results show that reader comments can improve the summarization performance, which also demonstrates the usefulness of the proposed dataset.
%R 10.18653/v1/W17-4512
%U https://aclanthology.org/W17-4512/
%U https://doi.org/10.18653/v1/W17-4512
%P 91-99
Markdown (Informal)
[Reader-Aware Multi-Document Summarization: An Enhanced Model and The First Dataset](https://aclanthology.org/W17-4512/) (Li et al., 2017)
ACL