@inproceedings{niu-carpuat-2017-discovering,
title = "Discovering Stylistic Variations in Distributional Vector Space Models via Lexical Paraphrases",
author = "Niu, Xing and
Carpuat, Marine",
editor = "Brooke, Julian and
Solorio, Thamar and
Koppel, Moshe",
booktitle = "Proceedings of the Workshop on Stylistic Variation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4903",
doi = "10.18653/v1/W17-4903",
pages = "20--27",
abstract = "Detecting and analyzing stylistic variation in language is relevant to diverse Natural Language Processing applications. In this work, we investigate whether salient dimensions of style variations are embedded in standard distributional vector spaces of word meaning. We hypothesizes that distances between embeddings of lexical paraphrases can help isolate style from meaning variations and help identify latent style dimensions. We conduct a qualitative analysis of latent style dimensions, and show the effectiveness of identified style subspaces on a lexical formality prediction task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="niu-carpuat-2017-discovering">
<titleInfo>
<title>Discovering Stylistic Variations in Distributional Vector Space Models via Lexical Paraphrases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Stylistic Variation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Brooke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moshe</namePart>
<namePart type="family">Koppel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Detecting and analyzing stylistic variation in language is relevant to diverse Natural Language Processing applications. In this work, we investigate whether salient dimensions of style variations are embedded in standard distributional vector spaces of word meaning. We hypothesizes that distances between embeddings of lexical paraphrases can help isolate style from meaning variations and help identify latent style dimensions. We conduct a qualitative analysis of latent style dimensions, and show the effectiveness of identified style subspaces on a lexical formality prediction task.</abstract>
<identifier type="citekey">niu-carpuat-2017-discovering</identifier>
<identifier type="doi">10.18653/v1/W17-4903</identifier>
<location>
<url>https://aclanthology.org/W17-4903</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>20</start>
<end>27</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discovering Stylistic Variations in Distributional Vector Space Models via Lexical Paraphrases
%A Niu, Xing
%A Carpuat, Marine
%Y Brooke, Julian
%Y Solorio, Thamar
%Y Koppel, Moshe
%S Proceedings of the Workshop on Stylistic Variation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F niu-carpuat-2017-discovering
%X Detecting and analyzing stylistic variation in language is relevant to diverse Natural Language Processing applications. In this work, we investigate whether salient dimensions of style variations are embedded in standard distributional vector spaces of word meaning. We hypothesizes that distances between embeddings of lexical paraphrases can help isolate style from meaning variations and help identify latent style dimensions. We conduct a qualitative analysis of latent style dimensions, and show the effectiveness of identified style subspaces on a lexical formality prediction task.
%R 10.18653/v1/W17-4903
%U https://aclanthology.org/W17-4903
%U https://doi.org/10.18653/v1/W17-4903
%P 20-27
Markdown (Informal)
[Discovering Stylistic Variations in Distributional Vector Space Models via Lexical Paraphrases](https://aclanthology.org/W17-4903) (Niu & Carpuat, Style-Var 2017)
ACL