@inproceedings{hitschler-etal-2017-authorship,
title = "Authorship Attribution with Convolutional Neural Networks and {POS}-Eliding",
author = "Hitschler, Julian and
van den Berg, Esther and
Rehbein, Ines",
editor = "Brooke, Julian and
Solorio, Thamar and
Koppel, Moshe",
booktitle = "Proceedings of the Workshop on Stylistic Variation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4907",
doi = "10.18653/v1/W17-4907",
pages = "53--58",
abstract = "We use a convolutional neural network to perform authorship identification on a very homogeneous dataset of scientific publications. In order to investigate the effect of domain biases, we obscure words below a certain frequency threshold, retaining only their POS-tags. This procedure improves test performance due to better generalization on unseen data. Using our method, we are able to predict the authors of scientific publications in the same discipline at levels well above chance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hitschler-etal-2017-authorship">
<titleInfo>
<title>Authorship Attribution with Convolutional Neural Networks and POS-Eliding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Hitschler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Esther</namePart>
<namePart type="family">van den Berg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ines</namePart>
<namePart type="family">Rehbein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Stylistic Variation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Brooke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Moshe</namePart>
<namePart type="family">Koppel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We use a convolutional neural network to perform authorship identification on a very homogeneous dataset of scientific publications. In order to investigate the effect of domain biases, we obscure words below a certain frequency threshold, retaining only their POS-tags. This procedure improves test performance due to better generalization on unseen data. Using our method, we are able to predict the authors of scientific publications in the same discipline at levels well above chance.</abstract>
<identifier type="citekey">hitschler-etal-2017-authorship</identifier>
<identifier type="doi">10.18653/v1/W17-4907</identifier>
<location>
<url>https://aclanthology.org/W17-4907</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>53</start>
<end>58</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Authorship Attribution with Convolutional Neural Networks and POS-Eliding
%A Hitschler, Julian
%A van den Berg, Esther
%A Rehbein, Ines
%Y Brooke, Julian
%Y Solorio, Thamar
%Y Koppel, Moshe
%S Proceedings of the Workshop on Stylistic Variation
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F hitschler-etal-2017-authorship
%X We use a convolutional neural network to perform authorship identification on a very homogeneous dataset of scientific publications. In order to investigate the effect of domain biases, we obscure words below a certain frequency threshold, retaining only their POS-tags. This procedure improves test performance due to better generalization on unseen data. Using our method, we are able to predict the authors of scientific publications in the same discipline at levels well above chance.
%R 10.18653/v1/W17-4907
%U https://aclanthology.org/W17-4907
%U https://doi.org/10.18653/v1/W17-4907
%P 53-58
Markdown (Informal)
[Authorship Attribution with Convolutional Neural Networks and POS-Eliding](https://aclanthology.org/W17-4907) (Hitschler et al., Style-Var 2017)
ACL