@inproceedings{rei-2017-detecting,
title = "Detecting Off-topic Responses to Visual Prompts",
author = "Rei, Marek",
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5020/",
doi = "10.18653/v1/W17-5020",
pages = "188--197",
abstract = "Automated methods for essay scoring have made great progress in recent years, achieving accuracies very close to human annotators. However, a known weakness of such automated scorers is not taking into account the semantic relevance of the submitted text. While there is existing work on detecting answer relevance given a textual prompt, very little previous research has been done to incorporate visual writing prompts. We propose a neural architecture and several extensions for detecting off-topic responses to visual prompts and evaluate it on a dataset of texts written by language learners."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rei-2017-detecting">
<titleInfo>
<title>Detecting Off-topic Responses to Visual Prompts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marek</namePart>
<namePart type="family">Rei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated methods for essay scoring have made great progress in recent years, achieving accuracies very close to human annotators. However, a known weakness of such automated scorers is not taking into account the semantic relevance of the submitted text. While there is existing work on detecting answer relevance given a textual prompt, very little previous research has been done to incorporate visual writing prompts. We propose a neural architecture and several extensions for detecting off-topic responses to visual prompts and evaluate it on a dataset of texts written by language learners.</abstract>
<identifier type="citekey">rei-2017-detecting</identifier>
<identifier type="doi">10.18653/v1/W17-5020</identifier>
<location>
<url>https://aclanthology.org/W17-5020/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>188</start>
<end>197</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Detecting Off-topic Responses to Visual Prompts
%A Rei, Marek
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F rei-2017-detecting
%X Automated methods for essay scoring have made great progress in recent years, achieving accuracies very close to human annotators. However, a known weakness of such automated scorers is not taking into account the semantic relevance of the submitted text. While there is existing work on detecting answer relevance given a textual prompt, very little previous research has been done to incorporate visual writing prompts. We propose a neural architecture and several extensions for detecting off-topic responses to visual prompts and evaluate it on a dataset of texts written by language learners.
%R 10.18653/v1/W17-5020
%U https://aclanthology.org/W17-5020/
%U https://doi.org/10.18653/v1/W17-5020
%P 188-197
Markdown (Informal)
[Detecting Off-topic Responses to Visual Prompts](https://aclanthology.org/W17-5020/) (Rei, BEA 2017)
ACL
- Marek Rei. 2017. Detecting Off-topic Responses to Visual Prompts. In Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 188–197, Copenhagen, Denmark. Association for Computational Linguistics.