@inproceedings{chan-etal-2017-ensemble,
title = "Ensemble Methods for Native Language Identification",
author = "Chan, Sophia and
Honari Jahromi, Maryam and
Benetti, Benjamin and
Lakhani, Aazim and
Fyshe, Alona",
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5023/",
doi = "10.18653/v1/W17-5023",
pages = "217--223",
abstract = "Our team{---}Uvic-NLP{---}explored and evaluated a variety of lexical features for Native Language Identification (NLI) within the framework of ensemble methods. Using a subset of the highest performing features, we train Support Vector Machines (SVM) and Fully Connected Neural Networks (FCNN) as base classifiers, and test different methods for combining their outputs. Restricting our scope to the closed essay track in the NLI Shared Task 2017, we find that our best SVM ensemble achieves an F1 score of 0.8730 on the test set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chan-etal-2017-ensemble">
<titleInfo>
<title>Ensemble Methods for Native Language Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Chan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maryam</namePart>
<namePart type="family">Honari Jahromi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Benetti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aazim</namePart>
<namePart type="family">Lakhani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alona</namePart>
<namePart type="family">Fyshe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Our team—Uvic-NLP—explored and evaluated a variety of lexical features for Native Language Identification (NLI) within the framework of ensemble methods. Using a subset of the highest performing features, we train Support Vector Machines (SVM) and Fully Connected Neural Networks (FCNN) as base classifiers, and test different methods for combining their outputs. Restricting our scope to the closed essay track in the NLI Shared Task 2017, we find that our best SVM ensemble achieves an F1 score of 0.8730 on the test set.</abstract>
<identifier type="citekey">chan-etal-2017-ensemble</identifier>
<identifier type="doi">10.18653/v1/W17-5023</identifier>
<location>
<url>https://aclanthology.org/W17-5023/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>217</start>
<end>223</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ensemble Methods for Native Language Identification
%A Chan, Sophia
%A Honari Jahromi, Maryam
%A Benetti, Benjamin
%A Lakhani, Aazim
%A Fyshe, Alona
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F chan-etal-2017-ensemble
%X Our team—Uvic-NLP—explored and evaluated a variety of lexical features for Native Language Identification (NLI) within the framework of ensemble methods. Using a subset of the highest performing features, we train Support Vector Machines (SVM) and Fully Connected Neural Networks (FCNN) as base classifiers, and test different methods for combining their outputs. Restricting our scope to the closed essay track in the NLI Shared Task 2017, we find that our best SVM ensemble achieves an F1 score of 0.8730 on the test set.
%R 10.18653/v1/W17-5023
%U https://aclanthology.org/W17-5023/
%U https://doi.org/10.18653/v1/W17-5023
%P 217-223
Markdown (Informal)
[Ensemble Methods for Native Language Identification](https://aclanthology.org/W17-5023/) (Chan et al., BEA 2017)
ACL
- Sophia Chan, Maryam Honari Jahromi, Benjamin Benetti, Aazim Lakhani, and Alona Fyshe. 2017. Ensemble Methods for Native Language Identification. In Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 217–223, Copenhagen, Denmark. Association for Computational Linguistics.