@inproceedings{cimino-dellorletta-2017-stacked,
title = "Stacked Sentence-Document Classifier Approach for Improving Native Language Identification",
author = "Cimino, Andrea and
Dell{'}Orletta, Felice",
editor = "Tetreault, Joel and
Burstein, Jill and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the 12th Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5049",
doi = "10.18653/v1/W17-5049",
pages = "430--437",
abstract = "In this paper, we describe the approach of the ItaliaNLP Lab team to native language identification and discuss the results we submitted as participants to the essay track of NLI Shared Task 2017. We introduce for the first time a 2-stacked sentence-document architecture for native language identification that is able to exploit both local sentence information and a wide set of general-purpose features qualifying the lexical and grammatical structure of the whole document. When evaluated on the official test set, our sentence-document stacked architecture obtained the best result among all the participants of the essay track with an F1 score of 0.8818.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cimino-dellorletta-2017-stacked">
<titleInfo>
<title>Stacked Sentence-Document Classifier Approach for Improving Native Language Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Cimino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felice</namePart>
<namePart type="family">Dell’Orletta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we describe the approach of the ItaliaNLP Lab team to native language identification and discuss the results we submitted as participants to the essay track of NLI Shared Task 2017. We introduce for the first time a 2-stacked sentence-document architecture for native language identification that is able to exploit both local sentence information and a wide set of general-purpose features qualifying the lexical and grammatical structure of the whole document. When evaluated on the official test set, our sentence-document stacked architecture obtained the best result among all the participants of the essay track with an F1 score of 0.8818.</abstract>
<identifier type="citekey">cimino-dellorletta-2017-stacked</identifier>
<identifier type="doi">10.18653/v1/W17-5049</identifier>
<location>
<url>https://aclanthology.org/W17-5049</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>430</start>
<end>437</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stacked Sentence-Document Classifier Approach for Improving Native Language Identification
%A Cimino, Andrea
%A Dell’Orletta, Felice
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F cimino-dellorletta-2017-stacked
%X In this paper, we describe the approach of the ItaliaNLP Lab team to native language identification and discuss the results we submitted as participants to the essay track of NLI Shared Task 2017. We introduce for the first time a 2-stacked sentence-document architecture for native language identification that is able to exploit both local sentence information and a wide set of general-purpose features qualifying the lexical and grammatical structure of the whole document. When evaluated on the official test set, our sentence-document stacked architecture obtained the best result among all the participants of the essay track with an F1 score of 0.8818.
%R 10.18653/v1/W17-5049
%U https://aclanthology.org/W17-5049
%U https://doi.org/10.18653/v1/W17-5049
%P 430-437
Markdown (Informal)
[Stacked Sentence-Document Classifier Approach for Improving Native Language Identification](https://aclanthology.org/W17-5049) (Cimino & Dell’Orletta, BEA 2017)
ACL