@inproceedings{arras-etal-2017-explaining,
title = "Explaining Recurrent Neural Network Predictions in Sentiment Analysis",
author = {Arras, Leila and
Montavon, Gr{\'e}goire and
M{\"u}ller, Klaus-Robert and
Samek, Wojciech},
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5221",
doi = "10.18653/v1/W17-5221",
pages = "159--168",
abstract = "Recently, a technique called Layer-wise Relevance Propagation (LRP) was shown to deliver insightful explanations in the form of input space relevances for understanding feed-forward neural network classification decisions. In the present work, we extend the usage of LRP to recurrent neural networks. We propose a specific propagation rule applicable to multiplicative connections as they arise in recurrent network architectures such as LSTMs and GRUs. We apply our technique to a word-based bi-directional LSTM model on a five-class sentiment prediction task, and evaluate the resulting LRP relevances both qualitatively and quantitatively, obtaining better results than a gradient-based related method which was used in previous work.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arras-etal-2017-explaining">
<titleInfo>
<title>Explaining Recurrent Neural Network Predictions in Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Leila</namePart>
<namePart type="family">Arras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grégoire</namePart>
<namePart type="family">Montavon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Klaus-Robert</namePart>
<namePart type="family">Müller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wojciech</namePart>
<namePart type="family">Samek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, a technique called Layer-wise Relevance Propagation (LRP) was shown to deliver insightful explanations in the form of input space relevances for understanding feed-forward neural network classification decisions. In the present work, we extend the usage of LRP to recurrent neural networks. We propose a specific propagation rule applicable to multiplicative connections as they arise in recurrent network architectures such as LSTMs and GRUs. We apply our technique to a word-based bi-directional LSTM model on a five-class sentiment prediction task, and evaluate the resulting LRP relevances both qualitatively and quantitatively, obtaining better results than a gradient-based related method which was used in previous work.</abstract>
<identifier type="citekey">arras-etal-2017-explaining</identifier>
<identifier type="doi">10.18653/v1/W17-5221</identifier>
<location>
<url>https://aclanthology.org/W17-5221</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>159</start>
<end>168</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explaining Recurrent Neural Network Predictions in Sentiment Analysis
%A Arras, Leila
%A Montavon, Grégoire
%A Müller, Klaus-Robert
%A Samek, Wojciech
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F arras-etal-2017-explaining
%X Recently, a technique called Layer-wise Relevance Propagation (LRP) was shown to deliver insightful explanations in the form of input space relevances for understanding feed-forward neural network classification decisions. In the present work, we extend the usage of LRP to recurrent neural networks. We propose a specific propagation rule applicable to multiplicative connections as they arise in recurrent network architectures such as LSTMs and GRUs. We apply our technique to a word-based bi-directional LSTM model on a five-class sentiment prediction task, and evaluate the resulting LRP relevances both qualitatively and quantitatively, obtaining better results than a gradient-based related method which was used in previous work.
%R 10.18653/v1/W17-5221
%U https://aclanthology.org/W17-5221
%U https://doi.org/10.18653/v1/W17-5221
%P 159-168
Markdown (Informal)
[Explaining Recurrent Neural Network Predictions in Sentiment Analysis](https://aclanthology.org/W17-5221) (Arras et al., WASSA 2017)
ACL
- Leila Arras, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. 2017. Explaining Recurrent Neural Network Predictions in Sentiment Analysis. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 159–168, Copenhagen, Denmark. Association for Computational Linguistics.