@inproceedings{zhang-etal-2017-ynu-hpcc,
    title = "{YNU}-{HPCC} at {E}mo{I}nt-2017: Using a {CNN}-{LSTM} Model for Sentiment Intensity Prediction",
    author = "Zhang, You  and
      Yuan, Hang  and
      Wang, Jin  and
      Zhang, Xuejie",
    editor = "Balahur, Alexandra  and
      Mohammad, Saif M.  and
      van der Goot, Erik",
    booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
    month = sep,
    year = "2017",
    address = "Copenhagen, Denmark",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W17-5227/",
    doi = "10.18653/v1/W17-5227",
    pages = "200--204",
    abstract = "In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to complete the task. The CNN-LSTM model has two combined parts: CNN extracts local n-gram features within tweets and LSTM composes the features to capture long-distance dependency across tweets. Additionally, we used other three models (CNN, LSTM, BiLSTM) as baseline algorithms. Our introduced model showed good performance in the experimental results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2017-ynu-hpcc">
    <titleInfo>
        <title>YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">You</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Hang</namePart>
        <namePart type="family">Yuan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jin</namePart>
        <namePart type="family">Wang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Xuejie</namePart>
        <namePart type="family">Zhang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2017-09</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Alexandra</namePart>
            <namePart type="family">Balahur</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Erik</namePart>
            <namePart type="family">van der Goot</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Copenhagen, Denmark</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to complete the task. The CNN-LSTM model has two combined parts: CNN extracts local n-gram features within tweets and LSTM composes the features to capture long-distance dependency across tweets. Additionally, we used other three models (CNN, LSTM, BiLSTM) as baseline algorithms. Our introduced model showed good performance in the experimental results.</abstract>
    <identifier type="citekey">zhang-etal-2017-ynu-hpcc</identifier>
    <identifier type="doi">10.18653/v1/W17-5227</identifier>
    <location>
        <url>https://aclanthology.org/W17-5227/</url>
    </location>
    <part>
        <date>2017-09</date>
        <extent unit="page">
            <start>200</start>
            <end>204</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction
%A Zhang, You
%A Yuan, Hang
%A Wang, Jin
%A Zhang, Xuejie
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F zhang-etal-2017-ynu-hpcc
%X In this paper, we present a system that uses a convolutional neural network with long short-term memory (CNN-LSTM) model to complete the task. The CNN-LSTM model has two combined parts: CNN extracts local n-gram features within tweets and LSTM composes the features to capture long-distance dependency across tweets. Additionally, we used other three models (CNN, LSTM, BiLSTM) as baseline algorithms. Our introduced model showed good performance in the experimental results.
%R 10.18653/v1/W17-5227
%U https://aclanthology.org/W17-5227/
%U https://doi.org/10.18653/v1/W17-5227
%P 200-204
Markdown (Informal)
[YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction](https://aclanthology.org/W17-5227/) (Zhang et al., WASSA 2017)
ACL