@inproceedings{marrese-taylor-matsuo-2017-emoatt,
title = "{E}mo{A}tt at {E}mo{I}nt-2017: Inner attention sentence embedding for Emotion Intensity",
author = "Marrese-Taylor, Edison and
Matsuo, Yutaka",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5232",
doi = "10.18653/v1/W17-5232",
pages = "233--237",
abstract = "In this paper we describe a deep learning system that has been designed and built for the WASSA 2017 Emotion Intensity Shared Task. We introduce a representation learning approach based on inner attention on top of an RNN. Results show that our model offers good capabilities and is able to successfully identify emotion-bearing words to predict intensity without leveraging on lexicons, obtaining the 13t place among 22 shared task competitors.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marrese-taylor-matsuo-2017-emoatt">
<titleInfo>
<title>EmoAtt at EmoInt-2017: Inner attention sentence embedding for Emotion Intensity</title>
</titleInfo>
<name type="personal">
<namePart type="given">Edison</namePart>
<namePart type="family">Marrese-Taylor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yutaka</namePart>
<namePart type="family">Matsuo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe a deep learning system that has been designed and built for the WASSA 2017 Emotion Intensity Shared Task. We introduce a representation learning approach based on inner attention on top of an RNN. Results show that our model offers good capabilities and is able to successfully identify emotion-bearing words to predict intensity without leveraging on lexicons, obtaining the 13t place among 22 shared task competitors.</abstract>
<identifier type="citekey">marrese-taylor-matsuo-2017-emoatt</identifier>
<identifier type="doi">10.18653/v1/W17-5232</identifier>
<location>
<url>https://aclanthology.org/W17-5232</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>233</start>
<end>237</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T EmoAtt at EmoInt-2017: Inner attention sentence embedding for Emotion Intensity
%A Marrese-Taylor, Edison
%A Matsuo, Yutaka
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F marrese-taylor-matsuo-2017-emoatt
%X In this paper we describe a deep learning system that has been designed and built for the WASSA 2017 Emotion Intensity Shared Task. We introduce a representation learning approach based on inner attention on top of an RNN. Results show that our model offers good capabilities and is able to successfully identify emotion-bearing words to predict intensity without leveraging on lexicons, obtaining the 13t place among 22 shared task competitors.
%R 10.18653/v1/W17-5232
%U https://aclanthology.org/W17-5232
%U https://doi.org/10.18653/v1/W17-5232
%P 233-237
Markdown (Informal)
[EmoAtt at EmoInt-2017: Inner attention sentence embedding for Emotion Intensity](https://aclanthology.org/W17-5232) (Marrese-Taylor & Matsuo, WASSA 2017)
ACL