@inproceedings{he-etal-2017-yzu,
title = "{YZU}-{NLP} at {E}mo{I}nt-2017: Determining Emotion Intensity Using a Bi-directional {LSTM}-{CNN} Model",
author = "He, Yuanye and
Yu, Liang-Chih and
Lai, K. Robert and
Liu, Weiyi",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5233/",
doi = "10.18653/v1/W17-5233",
pages = "238--242",
abstract = "The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet, the present task can provide more fine-grained (real-valued) sentiment analysis. This paper presents a system that uses a bi-directional LSTM-CNN model to complete the competition task. Combining bi-directional LSTM and CNN, the prediction process considers both global information in a tweet and local important information. The proposed method ranked sixth among twenty-one teams in terms of Pearson Correlation Coefficient."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="he-etal-2017-yzu">
<titleInfo>
<title>YZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuanye</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang-Chih</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="given">Robert</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weiyi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet, the present task can provide more fine-grained (real-valued) sentiment analysis. This paper presents a system that uses a bi-directional LSTM-CNN model to complete the competition task. Combining bi-directional LSTM and CNN, the prediction process considers both global information in a tweet and local important information. The proposed method ranked sixth among twenty-one teams in terms of Pearson Correlation Coefficient.</abstract>
<identifier type="citekey">he-etal-2017-yzu</identifier>
<identifier type="doi">10.18653/v1/W17-5233</identifier>
<location>
<url>https://aclanthology.org/W17-5233/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>238</start>
<end>242</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T YZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model
%A He, Yuanye
%A Yu, Liang-Chih
%A Lai, K. Robert
%A Liu, Weiyi
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F he-etal-2017-yzu
%X The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet, the present task can provide more fine-grained (real-valued) sentiment analysis. This paper presents a system that uses a bi-directional LSTM-CNN model to complete the competition task. Combining bi-directional LSTM and CNN, the prediction process considers both global information in a tweet and local important information. The proposed method ranked sixth among twenty-one teams in terms of Pearson Correlation Coefficient.
%R 10.18653/v1/W17-5233
%U https://aclanthology.org/W17-5233/
%U https://doi.org/10.18653/v1/W17-5233
%P 238-242
Markdown (Informal)
[YZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model](https://aclanthology.org/W17-5233/) (He et al., WASSA 2017)
ACL