@inproceedings{john-vechtomova-2017-uwat,
title = "{UW}at-Emote at {E}mo{I}nt-2017: Emotion Intensity Detection using Affect Clues, Sentiment Polarity and Word Embeddings",
author = "John, Vineet and
Vechtomova, Olga",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
van der Goot, Erik",
booktitle = "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5235",
doi = "10.18653/v1/W17-5235",
pages = "249--254",
abstract = "This paper describes the UWaterloo affect prediction system developed for EmoInt-2017. We delve into our feature selection approach for affect intensity, affect presence, sentiment intensity and sentiment presence lexica alongside pre-trained word embeddings, which are utilized to extract emotion intensity signals from tweets in an ensemble learning approach. The system employs emotion specific model training, and utilizes distinct models for each of the emotion corpora in isolation. Our system utilizes gradient boosted regression as the primary learning technique to predict the final emotion intensities.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="john-vechtomova-2017-uwat">
<titleInfo>
<title>UWat-Emote at EmoInt-2017: Emotion Intensity Detection using Affect Clues, Sentiment Polarity and Word Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vineet</namePart>
<namePart type="family">John</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Vechtomova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">van der Goot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the UWaterloo affect prediction system developed for EmoInt-2017. We delve into our feature selection approach for affect intensity, affect presence, sentiment intensity and sentiment presence lexica alongside pre-trained word embeddings, which are utilized to extract emotion intensity signals from tweets in an ensemble learning approach. The system employs emotion specific model training, and utilizes distinct models for each of the emotion corpora in isolation. Our system utilizes gradient boosted regression as the primary learning technique to predict the final emotion intensities.</abstract>
<identifier type="citekey">john-vechtomova-2017-uwat</identifier>
<identifier type="doi">10.18653/v1/W17-5235</identifier>
<location>
<url>https://aclanthology.org/W17-5235</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>249</start>
<end>254</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UWat-Emote at EmoInt-2017: Emotion Intensity Detection using Affect Clues, Sentiment Polarity and Word Embeddings
%A John, Vineet
%A Vechtomova, Olga
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y van der Goot, Erik
%S Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F john-vechtomova-2017-uwat
%X This paper describes the UWaterloo affect prediction system developed for EmoInt-2017. We delve into our feature selection approach for affect intensity, affect presence, sentiment intensity and sentiment presence lexica alongside pre-trained word embeddings, which are utilized to extract emotion intensity signals from tweets in an ensemble learning approach. The system employs emotion specific model training, and utilizes distinct models for each of the emotion corpora in isolation. Our system utilizes gradient boosted regression as the primary learning technique to predict the final emotion intensities.
%R 10.18653/v1/W17-5235
%U https://aclanthology.org/W17-5235
%U https://doi.org/10.18653/v1/W17-5235
%P 249-254
Markdown (Informal)
[UWat-Emote at EmoInt-2017: Emotion Intensity Detection using Affect Clues, Sentiment Polarity and Word Embeddings](https://aclanthology.org/W17-5235) (John & Vechtomova, WASSA 2017)
ACL