@inproceedings{yang-etal-2017-character,
title = "Character-level Intra Attention Network for Natural Language Inference",
author = "Yang, Han and
Costa-juss{\`a}, Marta R. and
Fonollosa, Jos{\'e} A. R.",
editor = "Bowman, Samuel and
Goldberg, Yoav and
Hill, Felix and
Lazaridou, Angeliki and
Levy, Omer and
Reichart, Roi and
S{\o}gaard, Anders",
booktitle = "Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for {NLP}",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-5309/",
doi = "10.18653/v1/W17-5309",
pages = "46--50",
abstract = "Natural language inference (NLI) is a central problem in language understanding. End-to-end artificial neural networks have reached state-of-the-art performance in NLI field recently. In this paper, we propose Character-level Intra Attention Network (CIAN) for the NLI task. In our model, we use the character-level convolutional network to replace the standard word embedding layer, and we use the intra attention to capture the intra-sentence semantics. The proposed CIAN model provides improved results based on a newly published MNLI corpus."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2017-character">
<titleInfo>
<title>Character-level Intra Attention Network for Natural Language Inference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Han</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">José</namePart>
<namePart type="given">A</namePart>
<namePart type="given">R</namePart>
<namePart type="family">Fonollosa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2017-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Bowman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felix</namePart>
<namePart type="family">Hill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angeliki</namePart>
<namePart type="family">Lazaridou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omer</namePart>
<namePart type="family">Levy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roi</namePart>
<namePart type="family">Reichart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Søgaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Copenhagen, Denmark</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Natural language inference (NLI) is a central problem in language understanding. End-to-end artificial neural networks have reached state-of-the-art performance in NLI field recently. In this paper, we propose Character-level Intra Attention Network (CIAN) for the NLI task. In our model, we use the character-level convolutional network to replace the standard word embedding layer, and we use the intra attention to capture the intra-sentence semantics. The proposed CIAN model provides improved results based on a newly published MNLI corpus.</abstract>
<identifier type="citekey">yang-etal-2017-character</identifier>
<identifier type="doi">10.18653/v1/W17-5309</identifier>
<location>
<url>https://aclanthology.org/W17-5309/</url>
</location>
<part>
<date>2017-09</date>
<extent unit="page">
<start>46</start>
<end>50</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Character-level Intra Attention Network for Natural Language Inference
%A Yang, Han
%A Costa-jussà, Marta R.
%A Fonollosa, José A. R.
%Y Bowman, Samuel
%Y Goldberg, Yoav
%Y Hill, Felix
%Y Lazaridou, Angeliki
%Y Levy, Omer
%Y Reichart, Roi
%Y Søgaard, Anders
%S Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP
%D 2017
%8 September
%I Association for Computational Linguistics
%C Copenhagen, Denmark
%F yang-etal-2017-character
%X Natural language inference (NLI) is a central problem in language understanding. End-to-end artificial neural networks have reached state-of-the-art performance in NLI field recently. In this paper, we propose Character-level Intra Attention Network (CIAN) for the NLI task. In our model, we use the character-level convolutional network to replace the standard word embedding layer, and we use the intra attention to capture the intra-sentence semantics. The proposed CIAN model provides improved results based on a newly published MNLI corpus.
%R 10.18653/v1/W17-5309
%U https://aclanthology.org/W17-5309/
%U https://doi.org/10.18653/v1/W17-5309
%P 46-50
Markdown (Informal)
[Character-level Intra Attention Network for Natural Language Inference](https://aclanthology.org/W17-5309/) (Yang et al., RepEval 2017)
ACL