@inproceedings{flor-riordan-2018-semantic,
    title = "A Semantic Role-based Approach to Open-Domain Automatic Question Generation",
    author = "Flor, Michael  and
      Riordan, Brian",
    editor = "Tetreault, Joel  and
      Burstein, Jill  and
      Kochmar, Ekaterina  and
      Leacock, Claudia  and
      Yannakoudakis, Helen",
    booktitle = "Proceedings of the Thirteenth Workshop on Innovative Use of {NLP} for Building Educational Applications",
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-0530/",
    doi = "10.18653/v1/W18-0530",
    pages = "254--263",
    abstract = "We present a novel rule-based system for automatic generation of factual questions from sentences, using semantic role labeling (SRL) as the main form of text analysis. The system is capable of generating both wh-questions and yes/no questions from the same semantic analysis. We present an extensive evaluation of the system and compare it to a recent neural network architecture for question generation. The SRL-based system outperforms the neural system in both average quality and variety of generated questions."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="flor-riordan-2018-semantic">
    <titleInfo>
        <title>A Semantic Role-based Approach to Open-Domain Automatic Question Generation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Michael</namePart>
        <namePart type="family">Flor</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Brian</namePart>
        <namePart type="family">Riordan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-06</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Joel</namePart>
            <namePart type="family">Tetreault</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Jill</namePart>
            <namePart type="family">Burstein</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Ekaterina</namePart>
            <namePart type="family">Kochmar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Claudia</namePart>
            <namePart type="family">Leacock</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Helen</namePart>
            <namePart type="family">Yannakoudakis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">New Orleans, Louisiana</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We present a novel rule-based system for automatic generation of factual questions from sentences, using semantic role labeling (SRL) as the main form of text analysis. The system is capable of generating both wh-questions and yes/no questions from the same semantic analysis. We present an extensive evaluation of the system and compare it to a recent neural network architecture for question generation. The SRL-based system outperforms the neural system in both average quality and variety of generated questions.</abstract>
    <identifier type="citekey">flor-riordan-2018-semantic</identifier>
    <identifier type="doi">10.18653/v1/W18-0530</identifier>
    <location>
        <url>https://aclanthology.org/W18-0530/</url>
    </location>
    <part>
        <date>2018-06</date>
        <extent unit="page">
            <start>254</start>
            <end>263</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Semantic Role-based Approach to Open-Domain Automatic Question Generation
%A Flor, Michael
%A Riordan, Brian
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F flor-riordan-2018-semantic
%X We present a novel rule-based system for automatic generation of factual questions from sentences, using semantic role labeling (SRL) as the main form of text analysis. The system is capable of generating both wh-questions and yes/no questions from the same semantic analysis. We present an extensive evaluation of the system and compare it to a recent neural network architecture for question generation. The SRL-based system outperforms the neural system in both average quality and variety of generated questions.
%R 10.18653/v1/W18-0530
%U https://aclanthology.org/W18-0530/
%U https://doi.org/10.18653/v1/W18-0530
%P 254-263
Markdown (Informal)
[A Semantic Role-based Approach to Open-Domain Automatic Question Generation](https://aclanthology.org/W18-0530/) (Flor & Riordan, BEA 2018)
ACL