@inproceedings{hartmann-dos-santos-2018-nilc,
title = "{NILC} at {CWI} 2018: Exploring Feature Engineering and Feature Learning",
author = "Hartmann, Nathan and
dos Santos, Leandro Borges",
editor = "Tetreault, Joel and
Burstein, Jill and
Kochmar, Ekaterina and
Leacock, Claudia and
Yannakoudakis, Helen",
booktitle = "Proceedings of the Thirteenth Workshop on Innovative Use of {NLP} for Building Educational Applications",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-0540",
doi = "10.18653/v1/W18-0540",
pages = "335--340",
abstract = "This paper describes the results of NILC team at CWI 2018. We developed solutions following three approaches: (i) a feature engineering method using lexical, n-gram and psycholinguistic features, (ii) a shallow neural network method using only word embeddings, and (iii) a Long Short-Term Memory (LSTM) language model, which is pre-trained on a large text corpus to produce a contextualized word vector. The feature engineering method obtained our best results for the classification task and the LSTM model achieved the best results for the probabilistic classification task. Our results show that deep neural networks are able to perform as well as traditional machine learning methods using manually engineered features for the task of complex word identification in English.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hartmann-dos-santos-2018-nilc">
<titleInfo>
<title>NILC at CWI 2018: Exploring Feature Engineering and Feature Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Hartmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leandro</namePart>
<namePart type="given">Borges</namePart>
<namePart type="family">dos Santos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the results of NILC team at CWI 2018. We developed solutions following three approaches: (i) a feature engineering method using lexical, n-gram and psycholinguistic features, (ii) a shallow neural network method using only word embeddings, and (iii) a Long Short-Term Memory (LSTM) language model, which is pre-trained on a large text corpus to produce a contextualized word vector. The feature engineering method obtained our best results for the classification task and the LSTM model achieved the best results for the probabilistic classification task. Our results show that deep neural networks are able to perform as well as traditional machine learning methods using manually engineered features for the task of complex word identification in English.</abstract>
<identifier type="citekey">hartmann-dos-santos-2018-nilc</identifier>
<identifier type="doi">10.18653/v1/W18-0540</identifier>
<location>
<url>https://aclanthology.org/W18-0540</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>335</start>
<end>340</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NILC at CWI 2018: Exploring Feature Engineering and Feature Learning
%A Hartmann, Nathan
%A dos Santos, Leandro Borges
%Y Tetreault, Joel
%Y Burstein, Jill
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Yannakoudakis, Helen
%S Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F hartmann-dos-santos-2018-nilc
%X This paper describes the results of NILC team at CWI 2018. We developed solutions following three approaches: (i) a feature engineering method using lexical, n-gram and psycholinguistic features, (ii) a shallow neural network method using only word embeddings, and (iii) a Long Short-Term Memory (LSTM) language model, which is pre-trained on a large text corpus to produce a contextualized word vector. The feature engineering method obtained our best results for the classification task and the LSTM model achieved the best results for the probabilistic classification task. Our results show that deep neural networks are able to perform as well as traditional machine learning methods using manually engineered features for the task of complex word identification in English.
%R 10.18653/v1/W18-0540
%U https://aclanthology.org/W18-0540
%U https://doi.org/10.18653/v1/W18-0540
%P 335-340
Markdown (Informal)
[NILC at CWI 2018: Exploring Feature Engineering and Feature Learning](https://aclanthology.org/W18-0540) (Hartmann & dos Santos, BEA 2018)
ACL