@inproceedings{ulinski-etal-2018-using,
title = "Using Hedge Detection to Improve Committed Belief Tagging",
author = "Ulinski, Morgan and
Benjamin, Seth and
Hirschberg, Julia",
editor = "Blanco, Eduardo and
Morante, Roser",
booktitle = "Proceedings of the Workshop on Computational Semantics beyond Events and Roles",
month = jun,
year = "2018",
address = "New Orleans, Louisiana",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-1301",
doi = "10.18653/v1/W18-1301",
pages = "1--5",
abstract = "We describe a novel method for identifying hedge terms using a set of manually constructed rules. We present experiments adding hedge features to a committed belief system to improve classification. We compare performance of this system (a) without hedging features, (b) with dictionary-based features, and (c) with rule-based features. We find that using hedge features improves performance of the committed belief system, particularly in identifying instances of non-committed belief and reported belief.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ulinski-etal-2018-using">
<titleInfo>
<title>Using Hedge Detection to Improve Committed Belief Tagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Morgan</namePart>
<namePart type="family">Ulinski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seth</namePart>
<namePart type="family">Benjamin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hirschberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Computational Semantics beyond Events and Roles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roser</namePart>
<namePart type="family">Morante</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">New Orleans, Louisiana</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe a novel method for identifying hedge terms using a set of manually constructed rules. We present experiments adding hedge features to a committed belief system to improve classification. We compare performance of this system (a) without hedging features, (b) with dictionary-based features, and (c) with rule-based features. We find that using hedge features improves performance of the committed belief system, particularly in identifying instances of non-committed belief and reported belief.</abstract>
<identifier type="citekey">ulinski-etal-2018-using</identifier>
<identifier type="doi">10.18653/v1/W18-1301</identifier>
<location>
<url>https://aclanthology.org/W18-1301</url>
</location>
<part>
<date>2018-06</date>
<extent unit="page">
<start>1</start>
<end>5</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Using Hedge Detection to Improve Committed Belief Tagging
%A Ulinski, Morgan
%A Benjamin, Seth
%A Hirschberg, Julia
%Y Blanco, Eduardo
%Y Morante, Roser
%S Proceedings of the Workshop on Computational Semantics beyond Events and Roles
%D 2018
%8 June
%I Association for Computational Linguistics
%C New Orleans, Louisiana
%F ulinski-etal-2018-using
%X We describe a novel method for identifying hedge terms using a set of manually constructed rules. We present experiments adding hedge features to a committed belief system to improve classification. We compare performance of this system (a) without hedging features, (b) with dictionary-based features, and (c) with rule-based features. We find that using hedge features improves performance of the committed belief system, particularly in identifying instances of non-committed belief and reported belief.
%R 10.18653/v1/W18-1301
%U https://aclanthology.org/W18-1301
%U https://doi.org/10.18653/v1/W18-1301
%P 1-5
Markdown (Informal)
[Using Hedge Detection to Improve Committed Belief Tagging](https://aclanthology.org/W18-1301) (Ulinski et al., SemBEaR 2018)
ACL