@inproceedings{seva-etal-2018-identifying,
title = "Identifying Key Sentences for Precision Oncology Using Semi-Supervised Learning",
author = "{\v{S}}eva, Jurica and
Wackerbauer, Martin and
Leser, Ulf",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the {B}io{NLP} 2018 workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2305/",
doi = "10.18653/v1/W18-2305",
pages = "35--46",
abstract = "We present a machine learning pipeline that identifies key sentences in abstracts of oncological articles to aid evidence-based medicine. This problem is characterized by the lack of gold standard datasets, data imbalance and thematic differences between available silver standard corpora. Additionally, available training and target data differs with regard to their domain (professional summaries vs. sentences in abstracts). This makes supervised machine learning inapplicable. We propose the use of two semi-supervised machine learning approaches: To mitigate difficulties arising from heterogeneous data sources, overcome data imbalance and create reliable training data we propose using transductive learning from positive and unlabelled data (PU Learning). For obtaining a realistic classification model, we propose the use of abstracts summarised in relevant sentences as unlabelled examples through Self-Training. The best model achieves 84{\%} accuracy and 0.84 F1 score on our dataset"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="seva-etal-2018-identifying">
<titleInfo>
<title>Identifying Key Sentences for Precision Oncology Using Semi-Supervised Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jurica</namePart>
<namePart type="family">Ševa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martin</namePart>
<namePart type="family">Wackerbauer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ulf</namePart>
<namePart type="family">Leser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the BioNLP 2018 workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a machine learning pipeline that identifies key sentences in abstracts of oncological articles to aid evidence-based medicine. This problem is characterized by the lack of gold standard datasets, data imbalance and thematic differences between available silver standard corpora. Additionally, available training and target data differs with regard to their domain (professional summaries vs. sentences in abstracts). This makes supervised machine learning inapplicable. We propose the use of two semi-supervised machine learning approaches: To mitigate difficulties arising from heterogeneous data sources, overcome data imbalance and create reliable training data we propose using transductive learning from positive and unlabelled data (PU Learning). For obtaining a realistic classification model, we propose the use of abstracts summarised in relevant sentences as unlabelled examples through Self-Training. The best model achieves 84% accuracy and 0.84 F1 score on our dataset</abstract>
<identifier type="citekey">seva-etal-2018-identifying</identifier>
<identifier type="doi">10.18653/v1/W18-2305</identifier>
<location>
<url>https://aclanthology.org/W18-2305/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>35</start>
<end>46</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Key Sentences for Precision Oncology Using Semi-Supervised Learning
%A Ševa, Jurica
%A Wackerbauer, Martin
%A Leser, Ulf
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the BioNLP 2018 workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F seva-etal-2018-identifying
%X We present a machine learning pipeline that identifies key sentences in abstracts of oncological articles to aid evidence-based medicine. This problem is characterized by the lack of gold standard datasets, data imbalance and thematic differences between available silver standard corpora. Additionally, available training and target data differs with regard to their domain (professional summaries vs. sentences in abstracts). This makes supervised machine learning inapplicable. We propose the use of two semi-supervised machine learning approaches: To mitigate difficulties arising from heterogeneous data sources, overcome data imbalance and create reliable training data we propose using transductive learning from positive and unlabelled data (PU Learning). For obtaining a realistic classification model, we propose the use of abstracts summarised in relevant sentences as unlabelled examples through Self-Training. The best model achieves 84% accuracy and 0.84 F1 score on our dataset
%R 10.18653/v1/W18-2305
%U https://aclanthology.org/W18-2305/
%U https://doi.org/10.18653/v1/W18-2305
%P 35-46
Markdown (Informal)
[Identifying Key Sentences for Precision Oncology Using Semi-Supervised Learning](https://aclanthology.org/W18-2305/) (Ševa et al., BioNLP 2018)
ACL