@inproceedings{nguyen-verspoor-2018-convolutional,
title = "Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings",
author = "Nguyen, Dat Quoc and
Verspoor, Karin",
editor = "Demner-Fushman, Dina and
Cohen, Kevin Bretonnel and
Ananiadou, Sophia and
Tsujii, Junichi",
booktitle = "Proceedings of the {B}io{NLP} 2018 workshop",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2314/",
doi = "10.18653/v1/W18-2314",
pages = "129--136",
abstract = "We investigate the incorporation of character-based word representations into a standard CNN-based relation extraction model. We experiment with two common neural architectures, CNN and LSTM, to learn word vector representations from character embeddings. Through a task on the BioCreative-V CDR corpus, extracting relationships between chemicals and diseases, we show that models exploiting the character-based word representations improve on models that do not use this information, obtaining state-of-the-art result relative to previous neural approaches."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-verspoor-2018-convolutional">
<titleInfo>
<title>Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dat</namePart>
<namePart type="given">Quoc</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karin</namePart>
<namePart type="family">Verspoor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the BioNLP 2018 workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dina</namePart>
<namePart type="family">Demner-Fushman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="given">Bretonnel</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sophia</namePart>
<namePart type="family">Ananiadou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junichi</namePart>
<namePart type="family">Tsujii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We investigate the incorporation of character-based word representations into a standard CNN-based relation extraction model. We experiment with two common neural architectures, CNN and LSTM, to learn word vector representations from character embeddings. Through a task on the BioCreative-V CDR corpus, extracting relationships between chemicals and diseases, we show that models exploiting the character-based word representations improve on models that do not use this information, obtaining state-of-the-art result relative to previous neural approaches.</abstract>
<identifier type="citekey">nguyen-verspoor-2018-convolutional</identifier>
<identifier type="doi">10.18653/v1/W18-2314</identifier>
<location>
<url>https://aclanthology.org/W18-2314/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>129</start>
<end>136</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings
%A Nguyen, Dat Quoc
%A Verspoor, Karin
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the BioNLP 2018 workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F nguyen-verspoor-2018-convolutional
%X We investigate the incorporation of character-based word representations into a standard CNN-based relation extraction model. We experiment with two common neural architectures, CNN and LSTM, to learn word vector representations from character embeddings. Through a task on the BioCreative-V CDR corpus, extracting relationships between chemicals and diseases, we show that models exploiting the character-based word representations improve on models that do not use this information, obtaining state-of-the-art result relative to previous neural approaches.
%R 10.18653/v1/W18-2314
%U https://aclanthology.org/W18-2314/
%U https://doi.org/10.18653/v1/W18-2314
%P 129-136
Markdown (Informal)
[Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings](https://aclanthology.org/W18-2314/) (Nguyen & Verspoor, BioNLP 2018)
ACL