@inproceedings{nguyen-verspoor-2018-convolutional,
    title = "Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings",
    author = "Nguyen, Dat Quoc  and
      Verspoor, Karin",
    editor = "Demner-Fushman, Dina  and
      Cohen, Kevin Bretonnel  and
      Ananiadou, Sophia  and
      Tsujii, Junichi",
    booktitle = "Proceedings of the {B}io{NLP} 2018 workshop",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-2314/",
    doi = "10.18653/v1/W18-2314",
    pages = "129--136",
    abstract = "We investigate the incorporation of character-based word representations into a standard CNN-based relation extraction model. We experiment with two common neural architectures, CNN and LSTM, to learn word vector representations from character embeddings. Through a task on the BioCreative-V CDR corpus, extracting relationships between chemicals and diseases, we show that models exploiting the character-based word representations improve on models that do not use this information, obtaining state-of-the-art result relative to previous neural approaches."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-verspoor-2018-convolutional">
    <titleInfo>
        <title>Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Dat</namePart>
        <namePart type="given">Quoc</namePart>
        <namePart type="family">Nguyen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Karin</namePart>
        <namePart type="family">Verspoor</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the BioNLP 2018 workshop</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Dina</namePart>
            <namePart type="family">Demner-Fushman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kevin</namePart>
            <namePart type="given">Bretonnel</namePart>
            <namePart type="family">Cohen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sophia</namePart>
            <namePart type="family">Ananiadou</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Junichi</namePart>
            <namePart type="family">Tsujii</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We investigate the incorporation of character-based word representations into a standard CNN-based relation extraction model. We experiment with two common neural architectures, CNN and LSTM, to learn word vector representations from character embeddings. Through a task on the BioCreative-V CDR corpus, extracting relationships between chemicals and diseases, we show that models exploiting the character-based word representations improve on models that do not use this information, obtaining state-of-the-art result relative to previous neural approaches.</abstract>
    <identifier type="citekey">nguyen-verspoor-2018-convolutional</identifier>
    <identifier type="doi">10.18653/v1/W18-2314</identifier>
    <location>
        <url>https://aclanthology.org/W18-2314/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>129</start>
            <end>136</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings
%A Nguyen, Dat Quoc
%A Verspoor, Karin
%Y Demner-Fushman, Dina
%Y Cohen, Kevin Bretonnel
%Y Ananiadou, Sophia
%Y Tsujii, Junichi
%S Proceedings of the BioNLP 2018 workshop
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F nguyen-verspoor-2018-convolutional
%X We investigate the incorporation of character-based word representations into a standard CNN-based relation extraction model. We experiment with two common neural architectures, CNN and LSTM, to learn word vector representations from character embeddings. Through a task on the BioCreative-V CDR corpus, extracting relationships between chemicals and diseases, we show that models exploiting the character-based word representations improve on models that do not use this information, obtaining state-of-the-art result relative to previous neural approaches.
%R 10.18653/v1/W18-2314
%U https://aclanthology.org/W18-2314/
%U https://doi.org/10.18653/v1/W18-2314
%P 129-136
Markdown (Informal)
[Convolutional neural networks for chemical-disease relation extraction are improved with character-based word embeddings](https://aclanthology.org/W18-2314/) (Nguyen & Verspoor, BioNLP 2018)
ACL