@inproceedings{maillard-clark-2018-latent,
    title = "Latent Tree Learning with Differentiable Parsers: Shift-Reduce Parsing and Chart Parsing",
    author = "Maillard, Jean  and
      Clark, Stephen",
    editor = "Dinu, Georgiana  and
      Ballesteros, Miguel  and
      Sil, Avirup  and
      Bowman, Sam  and
      Hamza, Wael  and
      Sogaard, Anders  and
      Naseem, Tahira  and
      Goldberg, Yoav",
    booktitle = "Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for {NLP}",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-2903/",
    doi = "10.18653/v1/W18-2903",
    pages = "13--18",
    abstract = "Latent tree learning models represent sentences by composing their words according to an induced parse tree, all based on a downstream task. These models often outperform baselines which use (externally provided) syntax trees to drive the composition order. This work contributes (a) a new latent tree learning model based on shift-reduce parsing, with competitive downstream performance and non-trivial induced trees, and (b) an analysis of the trees learned by our shift-reduce model and by a chart-based model."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="maillard-clark-2018-latent">
    <titleInfo>
        <title>Latent Tree Learning with Differentiable Parsers: Shift-Reduce Parsing and Chart Parsing</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Jean</namePart>
        <namePart type="family">Maillard</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Stephen</namePart>
        <namePart type="family">Clark</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Georgiana</namePart>
            <namePart type="family">Dinu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Miguel</namePart>
            <namePart type="family">Ballesteros</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Avirup</namePart>
            <namePart type="family">Sil</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Sam</namePart>
            <namePart type="family">Bowman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Wael</namePart>
            <namePart type="family">Hamza</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Anders</namePart>
            <namePart type="family">Sogaard</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Tahira</namePart>
            <namePart type="family">Naseem</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Yoav</namePart>
            <namePart type="family">Goldberg</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Latent tree learning models represent sentences by composing their words according to an induced parse tree, all based on a downstream task. These models often outperform baselines which use (externally provided) syntax trees to drive the composition order. This work contributes (a) a new latent tree learning model based on shift-reduce parsing, with competitive downstream performance and non-trivial induced trees, and (b) an analysis of the trees learned by our shift-reduce model and by a chart-based model.</abstract>
    <identifier type="citekey">maillard-clark-2018-latent</identifier>
    <identifier type="doi">10.18653/v1/W18-2903</identifier>
    <location>
        <url>https://aclanthology.org/W18-2903/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>13</start>
            <end>18</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Latent Tree Learning with Differentiable Parsers: Shift-Reduce Parsing and Chart Parsing
%A Maillard, Jean
%A Clark, Stephen
%Y Dinu, Georgiana
%Y Ballesteros, Miguel
%Y Sil, Avirup
%Y Bowman, Sam
%Y Hamza, Wael
%Y Sogaard, Anders
%Y Naseem, Tahira
%Y Goldberg, Yoav
%S Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F maillard-clark-2018-latent
%X Latent tree learning models represent sentences by composing their words according to an induced parse tree, all based on a downstream task. These models often outperform baselines which use (externally provided) syntax trees to drive the composition order. This work contributes (a) a new latent tree learning model based on shift-reduce parsing, with competitive downstream performance and non-trivial induced trees, and (b) an analysis of the trees learned by our shift-reduce model and by a chart-based model.
%R 10.18653/v1/W18-2903
%U https://aclanthology.org/W18-2903/
%U https://doi.org/10.18653/v1/W18-2903
%P 13-18
Markdown (Informal)
[Latent Tree Learning with Differentiable Parsers: Shift-Reduce Parsing and Chart Parsing](https://aclanthology.org/W18-2903/) (Maillard & Clark, ACL 2018)
ACL