@inproceedings{theil-etal-2018-word,
title = "Word Embeddings-Based Uncertainty Detection in Financial Disclosures",
author = "Theil, Christoph Kilian and
{\v{S}}tajner, Sanja and
Stuckenschmidt, Heiner",
editor = "Hahn, Udo and
Hoste, V{\'e}ronique and
Tsai, Ming-Feng",
booktitle = "Proceedings of the First Workshop on Economics and Natural Language Processing",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3104/",
doi = "10.18653/v1/W18-3104",
pages = "32--37",
abstract = "In this paper, we use NLP techniques to detect linguistic uncertainty in financial disclosures. Leveraging general-domain and domain-specific word embedding models, we automatically expand an existing dictionary of uncertainty triggers. We furthermore examine how an expert filtering affects the quality of such an expansion. We show that the dictionary expansions significantly improve regressions on stock return volatility. Lastly, we prove that the expansions significantly boost the automatic detection of uncertain sentences."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="theil-etal-2018-word">
<titleInfo>
<title>Word Embeddings-Based Uncertainty Detection in Financial Disclosures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christoph</namePart>
<namePart type="given">Kilian</namePart>
<namePart type="family">Theil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanja</namePart>
<namePart type="family">Štajner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heiner</namePart>
<namePart type="family">Stuckenschmidt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Economics and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Udo</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Véronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming-Feng</namePart>
<namePart type="family">Tsai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we use NLP techniques to detect linguistic uncertainty in financial disclosures. Leveraging general-domain and domain-specific word embedding models, we automatically expand an existing dictionary of uncertainty triggers. We furthermore examine how an expert filtering affects the quality of such an expansion. We show that the dictionary expansions significantly improve regressions on stock return volatility. Lastly, we prove that the expansions significantly boost the automatic detection of uncertain sentences.</abstract>
<identifier type="citekey">theil-etal-2018-word</identifier>
<identifier type="doi">10.18653/v1/W18-3104</identifier>
<location>
<url>https://aclanthology.org/W18-3104/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>32</start>
<end>37</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word Embeddings-Based Uncertainty Detection in Financial Disclosures
%A Theil, Christoph Kilian
%A Štajner, Sanja
%A Stuckenschmidt, Heiner
%Y Hahn, Udo
%Y Hoste, Véronique
%Y Tsai, Ming-Feng
%S Proceedings of the First Workshop on Economics and Natural Language Processing
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F theil-etal-2018-word
%X In this paper, we use NLP techniques to detect linguistic uncertainty in financial disclosures. Leveraging general-domain and domain-specific word embedding models, we automatically expand an existing dictionary of uncertainty triggers. We furthermore examine how an expert filtering affects the quality of such an expansion. We show that the dictionary expansions significantly improve regressions on stock return volatility. Lastly, we prove that the expansions significantly boost the automatic detection of uncertain sentences.
%R 10.18653/v1/W18-3104
%U https://aclanthology.org/W18-3104/
%U https://doi.org/10.18653/v1/W18-3104
%P 32-37
Markdown (Informal)
[Word Embeddings-Based Uncertainty Detection in Financial Disclosures](https://aclanthology.org/W18-3104/) (Theil et al., ACL 2018)
ACL