@inproceedings{tommasel-etal-2018-textual,
title = "Textual Aggression Detection through Deep Learning",
author = "Tommasel, Antonela and
Rodriguez, Juan Manuel and
Godoy, Daniela",
editor = "Kumar, Ritesh and
Ojha, Atul Kr. and
Zampieri, Marcos and
Malmasi, Shervin",
booktitle = "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying ({TRAC}-2018)",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4421",
pages = "177--187",
abstract = "Cyberbullying and cyberaggression are serious and widespread issues increasingly affecting Internet users. With the widespread of social media networks, bullying, once limited to particular places, can now occur anytime and anywhere. Cyberaggression refers to aggressive online behaviour that aims at harming other individuals, and involves rude, insulting, offensive, teasing or demoralising comments through online social media. Considering the dangerous consequences that cyberaggression has on its victims and its rapid spread amongst internet users (specially kids and teens), it is crucial to understand how cyberbullying occurs to prevent it from escalating. Given the massive information overload on the Web, there is an imperious need to develop intelligent techniques to automatically detect harmful content, which would allow the large-scale social media monitoring and early detection of undesired situations. This paper presents the Isistanitos{'}s approach for detecting aggressive content in multiple social media sites. The approach is based on combining Support Vector Machines and Recurrent Neural Network models for analysing a wide-range of character, word, word embeddings, sentiment and irony features. Results confirmed the difficulty of the task (particularly for detecting covert aggressions), showing the limitations of traditionally used features.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tommasel-etal-2018-textual">
<titleInfo>
<title>Textual Aggression Detection through Deep Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antonela</namePart>
<namePart type="family">Tommasel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">Manuel</namePart>
<namePart type="family">Rodriguez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniela</namePart>
<namePart type="family">Godoy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cyberbullying and cyberaggression are serious and widespread issues increasingly affecting Internet users. With the widespread of social media networks, bullying, once limited to particular places, can now occur anytime and anywhere. Cyberaggression refers to aggressive online behaviour that aims at harming other individuals, and involves rude, insulting, offensive, teasing or demoralising comments through online social media. Considering the dangerous consequences that cyberaggression has on its victims and its rapid spread amongst internet users (specially kids and teens), it is crucial to understand how cyberbullying occurs to prevent it from escalating. Given the massive information overload on the Web, there is an imperious need to develop intelligent techniques to automatically detect harmful content, which would allow the large-scale social media monitoring and early detection of undesired situations. This paper presents the Isistanitos’s approach for detecting aggressive content in multiple social media sites. The approach is based on combining Support Vector Machines and Recurrent Neural Network models for analysing a wide-range of character, word, word embeddings, sentiment and irony features. Results confirmed the difficulty of the task (particularly for detecting covert aggressions), showing the limitations of traditionally used features.</abstract>
<identifier type="citekey">tommasel-etal-2018-textual</identifier>
<location>
<url>https://aclanthology.org/W18-4421</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>177</start>
<end>187</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Textual Aggression Detection through Deep Learning
%A Tommasel, Antonela
%A Rodriguez, Juan Manuel
%A Godoy, Daniela
%Y Kumar, Ritesh
%Y Ojha, Atul Kr.
%Y Zampieri, Marcos
%Y Malmasi, Shervin
%S Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F tommasel-etal-2018-textual
%X Cyberbullying and cyberaggression are serious and widespread issues increasingly affecting Internet users. With the widespread of social media networks, bullying, once limited to particular places, can now occur anytime and anywhere. Cyberaggression refers to aggressive online behaviour that aims at harming other individuals, and involves rude, insulting, offensive, teasing or demoralising comments through online social media. Considering the dangerous consequences that cyberaggression has on its victims and its rapid spread amongst internet users (specially kids and teens), it is crucial to understand how cyberbullying occurs to prevent it from escalating. Given the massive information overload on the Web, there is an imperious need to develop intelligent techniques to automatically detect harmful content, which would allow the large-scale social media monitoring and early detection of undesired situations. This paper presents the Isistanitos’s approach for detecting aggressive content in multiple social media sites. The approach is based on combining Support Vector Machines and Recurrent Neural Network models for analysing a wide-range of character, word, word embeddings, sentiment and irony features. Results confirmed the difficulty of the task (particularly for detecting covert aggressions), showing the limitations of traditionally used features.
%U https://aclanthology.org/W18-4421
%P 177-187
Markdown (Informal)
[Textual Aggression Detection through Deep Learning](https://aclanthology.org/W18-4421) (Tommasel et al., TRAC 2018)
ACL
- Antonela Tommasel, Juan Manuel Rodriguez, and Daniela Godoy. 2018. Textual Aggression Detection through Deep Learning. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018), pages 177–187, Santa Fe, New Mexico, USA. Association for Computational Linguistics.