@inproceedings{moeller-etal-2018-neural,
title = "A Neural Morphological Analyzer for {A}rapaho Verbs Learned from a Finite State Transducer",
author = "Moeller, Sarah and
Kazeminejad, Ghazaleh and
Cowell, Andrew and
Hulden, Mans",
editor = "Klavans, Judith L.",
booktitle = "Proceedings of the Workshop on Computational Modeling of Polysynthetic Languages",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4802/",
pages = "12--20",
abstract = "We experiment with training an encoder-decoder neural model for mimicking the behavior of an existing hand-written finite-state morphological grammar for Arapaho verbs, a polysynthetic language with a highly complex verbal inflection system. After adjusting for ambiguous parses, we find that the system is able to generalize to unseen forms with accuracies of 98.68{\%} (unambiguous verbs) and 92.90{\%} (all verbs)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moeller-etal-2018-neural">
<titleInfo>
<title>A Neural Morphological Analyzer for Arapaho Verbs Learned from a Finite State Transducer</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Moeller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ghazaleh</namePart>
<namePart type="family">Kazeminejad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Cowell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mans</namePart>
<namePart type="family">Hulden</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Computational Modeling of Polysynthetic Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Judith</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Klavans</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We experiment with training an encoder-decoder neural model for mimicking the behavior of an existing hand-written finite-state morphological grammar for Arapaho verbs, a polysynthetic language with a highly complex verbal inflection system. After adjusting for ambiguous parses, we find that the system is able to generalize to unseen forms with accuracies of 98.68% (unambiguous verbs) and 92.90% (all verbs).</abstract>
<identifier type="citekey">moeller-etal-2018-neural</identifier>
<location>
<url>https://aclanthology.org/W18-4802/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>12</start>
<end>20</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Neural Morphological Analyzer for Arapaho Verbs Learned from a Finite State Transducer
%A Moeller, Sarah
%A Kazeminejad, Ghazaleh
%A Cowell, Andrew
%A Hulden, Mans
%Y Klavans, Judith L.
%S Proceedings of the Workshop on Computational Modeling of Polysynthetic Languages
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F moeller-etal-2018-neural
%X We experiment with training an encoder-decoder neural model for mimicking the behavior of an existing hand-written finite-state morphological grammar for Arapaho verbs, a polysynthetic language with a highly complex verbal inflection system. After adjusting for ambiguous parses, we find that the system is able to generalize to unseen forms with accuracies of 98.68% (unambiguous verbs) and 92.90% (all verbs).
%U https://aclanthology.org/W18-4802/
%P 12-20
Markdown (Informal)
[A Neural Morphological Analyzer for Arapaho Verbs Learned from a Finite State Transducer](https://aclanthology.org/W18-4802/) (Moeller et al., PYLO 2018)
ACL