@inproceedings{moeller-etal-2018-neural,
    title = "A Neural Morphological Analyzer for {A}rapaho Verbs Learned from a Finite State Transducer",
    author = "Moeller, Sarah  and
      Kazeminejad, Ghazaleh  and
      Cowell, Andrew  and
      Hulden, Mans",
    editor = "Klavans, Judith L.",
    booktitle = "Proceedings of the Workshop on Computational Modeling of Polysynthetic Languages",
    month = aug,
    year = "2018",
    address = "Santa Fe, New Mexico, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-4802/",
    pages = "12--20",
    abstract = "We experiment with training an encoder-decoder neural model for mimicking the behavior of an existing hand-written finite-state morphological grammar for Arapaho verbs, a polysynthetic language with a highly complex verbal inflection system. After adjusting for ambiguous parses, we find that the system is able to generalize to unseen forms with accuracies of 98.68{\%} (unambiguous verbs) and 92.90{\%} (all verbs)."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="moeller-etal-2018-neural">
    <titleInfo>
        <title>A Neural Morphological Analyzer for Arapaho Verbs Learned from a Finite State Transducer</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Sarah</namePart>
        <namePart type="family">Moeller</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Ghazaleh</namePart>
        <namePart type="family">Kazeminejad</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Andrew</namePart>
        <namePart type="family">Cowell</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mans</namePart>
        <namePart type="family">Hulden</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Workshop on Computational Modeling of Polysynthetic Languages</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Judith</namePart>
            <namePart type="given">L</namePart>
            <namePart type="family">Klavans</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We experiment with training an encoder-decoder neural model for mimicking the behavior of an existing hand-written finite-state morphological grammar for Arapaho verbs, a polysynthetic language with a highly complex verbal inflection system. After adjusting for ambiguous parses, we find that the system is able to generalize to unseen forms with accuracies of 98.68% (unambiguous verbs) and 92.90% (all verbs).</abstract>
    <identifier type="citekey">moeller-etal-2018-neural</identifier>
    <location>
        <url>https://aclanthology.org/W18-4802/</url>
    </location>
    <part>
        <date>2018-08</date>
        <extent unit="page">
            <start>12</start>
            <end>20</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Neural Morphological Analyzer for Arapaho Verbs Learned from a Finite State Transducer
%A Moeller, Sarah
%A Kazeminejad, Ghazaleh
%A Cowell, Andrew
%A Hulden, Mans
%Y Klavans, Judith L.
%S Proceedings of the Workshop on Computational Modeling of Polysynthetic Languages
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F moeller-etal-2018-neural
%X We experiment with training an encoder-decoder neural model for mimicking the behavior of an existing hand-written finite-state morphological grammar for Arapaho verbs, a polysynthetic language with a highly complex verbal inflection system. After adjusting for ambiguous parses, we find that the system is able to generalize to unseen forms with accuracies of 98.68% (unambiguous verbs) and 92.90% (all verbs).
%U https://aclanthology.org/W18-4802/
%P 12-20
Markdown (Informal)
[A Neural Morphological Analyzer for Arapaho Verbs Learned from a Finite State Transducer](https://aclanthology.org/W18-4802/) (Moeller et al., PYLO 2018)
ACL