@inproceedings{hakimi-parizi-cook-2018-character,
title = "Do Character-Level Neural Network Language Models Capture Knowledge of Multiword Expression Compositionality?",
author = "Hakimi Parizi, Ali and
Cook, Paul",
editor = "Savary, Agata and
Ramisch, Carlos and
Hwang, Jena D. and
Schneider, Nathan and
Andresen, Melanie and
Pradhan, Sameer and
Petruck, Miriam R. L.",
booktitle = "Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions ({LAW}-{MWE}-{C}x{G}-2018)",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4920/",
pages = "185--192",
abstract = "In this paper, we propose the first model for multiword expression (MWE) compositionality prediction based on character-level neural network language models. Experimental results on two kinds of MWEs (noun compounds and verb-particle constructions) and two languages (English and German) suggest that character-level neural network language models capture knowledge of multiword expression compositionality, in particular for English noun compounds and the particle component of English verb-particle constructions. In contrast to many other approaches to MWE compositionality prediction, this character-level approach does not require token-level identification of MWEs in a training corpus, and can potentially predict the compositionality of out-of-vocabulary MWEs."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hakimi-parizi-cook-2018-character">
<titleInfo>
<title>Do Character-Level Neural Network Language Models Capture Knowledge of Multiword Expression Compositionality?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ali</namePart>
<namePart type="family">Hakimi Parizi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Cook</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Agata</namePart>
<namePart type="family">Savary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlos</namePart>
<namePart type="family">Ramisch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jena</namePart>
<namePart type="given">D</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Melanie</namePart>
<namePart type="family">Andresen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sameer</namePart>
<namePart type="family">Pradhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miriam</namePart>
<namePart type="given">R</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Petruck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose the first model for multiword expression (MWE) compositionality prediction based on character-level neural network language models. Experimental results on two kinds of MWEs (noun compounds and verb-particle constructions) and two languages (English and German) suggest that character-level neural network language models capture knowledge of multiword expression compositionality, in particular for English noun compounds and the particle component of English verb-particle constructions. In contrast to many other approaches to MWE compositionality prediction, this character-level approach does not require token-level identification of MWEs in a training corpus, and can potentially predict the compositionality of out-of-vocabulary MWEs.</abstract>
<identifier type="citekey">hakimi-parizi-cook-2018-character</identifier>
<location>
<url>https://aclanthology.org/W18-4920/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>185</start>
<end>192</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Do Character-Level Neural Network Language Models Capture Knowledge of Multiword Expression Compositionality?
%A Hakimi Parizi, Ali
%A Cook, Paul
%Y Savary, Agata
%Y Ramisch, Carlos
%Y Hwang, Jena D.
%Y Schneider, Nathan
%Y Andresen, Melanie
%Y Pradhan, Sameer
%Y Petruck, Miriam R. L.
%S Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018)
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F hakimi-parizi-cook-2018-character
%X In this paper, we propose the first model for multiword expression (MWE) compositionality prediction based on character-level neural network language models. Experimental results on two kinds of MWEs (noun compounds and verb-particle constructions) and two languages (English and German) suggest that character-level neural network language models capture knowledge of multiword expression compositionality, in particular for English noun compounds and the particle component of English verb-particle constructions. In contrast to many other approaches to MWE compositionality prediction, this character-level approach does not require token-level identification of MWEs in a training corpus, and can potentially predict the compositionality of out-of-vocabulary MWEs.
%U https://aclanthology.org/W18-4920/
%P 185-192
Markdown (Informal)
[Do Character-Level Neural Network Language Models Capture Knowledge of Multiword Expression Compositionality?](https://aclanthology.org/W18-4920/) (Hakimi Parizi & Cook, LAW-MWE 2018)
ACL