@inproceedings{inaba-takahashi-2018-estimating,
title = "Estimating User Interest from Open-Domain Dialogue",
author = "Inaba, Michimasa and
Takahashi, Kenichi",
editor = "Komatani, Kazunori and
Litman, Diane and
Yu, Kai and
Papangelis, Alex and
Cavedon, Lawrence and
Nakano, Mikio",
booktitle = "Proceedings of the 19th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5004",
doi = "10.18653/v1/W18-5004",
pages = "32--40",
abstract = "Dialogue personalization is an important issue in the field of open-domain chat-oriented dialogue systems. If these systems could consider their users{'} interests, user engagement and satisfaction would be greatly improved. This paper proposes a neural network-based method for estimating users{'} interests from their utterances in chat dialogues to personalize dialogue systems{'} responses. We introduce a method for effectively extracting topics and user interests from utterances and also propose a pre-training approach that increases learning efficiency. Our experimental results indicate that the proposed model can estimate user{'}s interest more accurately than baseline approaches.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="inaba-takahashi-2018-estimating">
<titleInfo>
<title>Estimating User Interest from Open-Domain Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michimasa</namePart>
<namePart type="family">Inaba</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kenichi</namePart>
<namePart type="family">Takahashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazunori</namePart>
<namePart type="family">Komatani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="family">Cavedon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dialogue personalization is an important issue in the field of open-domain chat-oriented dialogue systems. If these systems could consider their users’ interests, user engagement and satisfaction would be greatly improved. This paper proposes a neural network-based method for estimating users’ interests from their utterances in chat dialogues to personalize dialogue systems’ responses. We introduce a method for effectively extracting topics and user interests from utterances and also propose a pre-training approach that increases learning efficiency. Our experimental results indicate that the proposed model can estimate user’s interest more accurately than baseline approaches.</abstract>
<identifier type="citekey">inaba-takahashi-2018-estimating</identifier>
<identifier type="doi">10.18653/v1/W18-5004</identifier>
<location>
<url>https://aclanthology.org/W18-5004</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>32</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Estimating User Interest from Open-Domain Dialogue
%A Inaba, Michimasa
%A Takahashi, Kenichi
%Y Komatani, Kazunori
%Y Litman, Diane
%Y Yu, Kai
%Y Papangelis, Alex
%Y Cavedon, Lawrence
%Y Nakano, Mikio
%S Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F inaba-takahashi-2018-estimating
%X Dialogue personalization is an important issue in the field of open-domain chat-oriented dialogue systems. If these systems could consider their users’ interests, user engagement and satisfaction would be greatly improved. This paper proposes a neural network-based method for estimating users’ interests from their utterances in chat dialogues to personalize dialogue systems’ responses. We introduce a method for effectively extracting topics and user interests from utterances and also propose a pre-training approach that increases learning efficiency. Our experimental results indicate that the proposed model can estimate user’s interest more accurately than baseline approaches.
%R 10.18653/v1/W18-5004
%U https://aclanthology.org/W18-5004
%U https://doi.org/10.18653/v1/W18-5004
%P 32-40
Markdown (Informal)
[Estimating User Interest from Open-Domain Dialogue](https://aclanthology.org/W18-5004) (Inaba & Takahashi, SIGDIAL 2018)
ACL
- Michimasa Inaba and Kenichi Takahashi. 2018. Estimating User Interest from Open-Domain Dialogue. In Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue, pages 32–40, Melbourne, Australia. Association for Computational Linguistics.