@inproceedings{passon-etal-2018-predicting,
title = "Predicting the Usefulness of {A}mazon Reviews Using Off-The-Shelf Argumentation Mining",
author = "Passon, Marco and
Lippi, Marco and
Serra, Giuseppe and
Tasso, Carlo",
editor = "Slonim, Noam and
Aharonov, Ranit",
booktitle = "Proceedings of the 5th Workshop on Argument Mining",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5205",
doi = "10.18653/v1/W18-5205",
pages = "35--39",
abstract = "Internet users generate content at unprecedented rates. Building intelligent systems capable of discriminating useful content within this ocean of information is thus becoming a urgent need. In this paper, we aim to predict the usefulness of Amazon reviews, and to do this we exploit features coming from an off-the-shelf argumentation mining system. We argue that the usefulness of a review, in fact, is strictly related to its argumentative content, whereas the use of an already trained system avoids the costly need of relabeling a novel dataset. Results obtained on a large publicly available corpus support this hypothesis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="passon-etal-2018-predicting">
<titleInfo>
<title>Predicting the Usefulness of Amazon Reviews Using Off-The-Shelf Argumentation Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Passon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Lippi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Serra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Carlo</namePart>
<namePart type="family">Tasso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Noam</namePart>
<namePart type="family">Slonim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ranit</namePart>
<namePart type="family">Aharonov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Internet users generate content at unprecedented rates. Building intelligent systems capable of discriminating useful content within this ocean of information is thus becoming a urgent need. In this paper, we aim to predict the usefulness of Amazon reviews, and to do this we exploit features coming from an off-the-shelf argumentation mining system. We argue that the usefulness of a review, in fact, is strictly related to its argumentative content, whereas the use of an already trained system avoids the costly need of relabeling a novel dataset. Results obtained on a large publicly available corpus support this hypothesis.</abstract>
<identifier type="citekey">passon-etal-2018-predicting</identifier>
<identifier type="doi">10.18653/v1/W18-5205</identifier>
<location>
<url>https://aclanthology.org/W18-5205</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>35</start>
<end>39</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting the Usefulness of Amazon Reviews Using Off-The-Shelf Argumentation Mining
%A Passon, Marco
%A Lippi, Marco
%A Serra, Giuseppe
%A Tasso, Carlo
%Y Slonim, Noam
%Y Aharonov, Ranit
%S Proceedings of the 5th Workshop on Argument Mining
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F passon-etal-2018-predicting
%X Internet users generate content at unprecedented rates. Building intelligent systems capable of discriminating useful content within this ocean of information is thus becoming a urgent need. In this paper, we aim to predict the usefulness of Amazon reviews, and to do this we exploit features coming from an off-the-shelf argumentation mining system. We argue that the usefulness of a review, in fact, is strictly related to its argumentative content, whereas the use of an already trained system avoids the costly need of relabeling a novel dataset. Results obtained on a large publicly available corpus support this hypothesis.
%R 10.18653/v1/W18-5205
%U https://aclanthology.org/W18-5205
%U https://doi.org/10.18653/v1/W18-5205
%P 35-39
Markdown (Informal)
[Predicting the Usefulness of Amazon Reviews Using Off-The-Shelf Argumentation Mining](https://aclanthology.org/W18-5205) (Passon et al., ArgMining 2018)
ACL