@inproceedings{hao-etal-2018-context,
    title = "Context-Free Transductions with Neural Stacks",
    author = "Hao, Yiding  and
      Merrill, William  and
      Angluin, Dana  and
      Frank, Robert  and
      Amsel, Noah  and
      Benz, Andrew  and
      Mendelsohn, Simon",
    editor = "Linzen, Tal  and
      Chrupa{\l}a, Grzegorz  and
      Alishahi, Afra",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5433/",
    doi = "10.18653/v1/W18-5433",
    pages = "306--315",
    abstract = "This paper analyzes the behavior of stack-augmented recurrent neural network (RNN) models. Due to the architectural similarity between stack RNNs and pushdown transducers, we train stack RNN models on a number of tasks, including string reversal, context-free language modelling, and cumulative XOR evaluation. Examining the behavior of our networks, we show that stack-augmented RNNs can discover intuitive stack-based strategies for solving our tasks. However, stack RNNs are more difficult to train than classical architectures such as LSTMs. Rather than employ stack-based strategies, more complex networks often find approximate solutions by using the stack as unstructured memory."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hao-etal-2018-context">
    <titleInfo>
        <title>Context-Free Transductions with Neural Stacks</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Yiding</namePart>
        <namePart type="family">Hao</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">William</namePart>
        <namePart type="family">Merrill</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dana</namePart>
        <namePart type="family">Angluin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Robert</namePart>
        <namePart type="family">Frank</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Noah</namePart>
        <namePart type="family">Amsel</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Andrew</namePart>
        <namePart type="family">Benz</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Simon</namePart>
        <namePart type="family">Mendelsohn</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Tal</namePart>
            <namePart type="family">Linzen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Grzegorz</namePart>
            <namePart type="family">Chrupała</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Afra</namePart>
            <namePart type="family">Alishahi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper analyzes the behavior of stack-augmented recurrent neural network (RNN) models. Due to the architectural similarity between stack RNNs and pushdown transducers, we train stack RNN models on a number of tasks, including string reversal, context-free language modelling, and cumulative XOR evaluation. Examining the behavior of our networks, we show that stack-augmented RNNs can discover intuitive stack-based strategies for solving our tasks. However, stack RNNs are more difficult to train than classical architectures such as LSTMs. Rather than employ stack-based strategies, more complex networks often find approximate solutions by using the stack as unstructured memory.</abstract>
    <identifier type="citekey">hao-etal-2018-context</identifier>
    <identifier type="doi">10.18653/v1/W18-5433</identifier>
    <location>
        <url>https://aclanthology.org/W18-5433/</url>
    </location>
    <part>
        <date>2018-11</date>
        <extent unit="page">
            <start>306</start>
            <end>315</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Context-Free Transductions with Neural Stacks
%A Hao, Yiding
%A Merrill, William
%A Angluin, Dana
%A Frank, Robert
%A Amsel, Noah
%A Benz, Andrew
%A Mendelsohn, Simon
%Y Linzen, Tal
%Y Chrupała, Grzegorz
%Y Alishahi, Afra
%S Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F hao-etal-2018-context
%X This paper analyzes the behavior of stack-augmented recurrent neural network (RNN) models. Due to the architectural similarity between stack RNNs and pushdown transducers, we train stack RNN models on a number of tasks, including string reversal, context-free language modelling, and cumulative XOR evaluation. Examining the behavior of our networks, we show that stack-augmented RNNs can discover intuitive stack-based strategies for solving our tasks. However, stack RNNs are more difficult to train than classical architectures such as LSTMs. Rather than employ stack-based strategies, more complex networks often find approximate solutions by using the stack as unstructured memory.
%R 10.18653/v1/W18-5433
%U https://aclanthology.org/W18-5433/
%U https://doi.org/10.18653/v1/W18-5433
%P 306-315
Markdown (Informal)
[Context-Free Transductions with Neural Stacks](https://aclanthology.org/W18-5433/) (Hao et al., EMNLP 2018)
ACL
- Yiding Hao, William Merrill, Dana Angluin, Robert Frank, Noah Amsel, Andrew Benz, and Simon Mendelsohn. 2018. Context-Free Transductions with Neural Stacks. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 306–315, Brussels, Belgium. Association for Computational Linguistics.