@inproceedings{poerner-etal-2018-interpretable,
title = "Interpretable Textual Neuron Representations for {NLP}",
author = {Poerner, Nina and
Roth, Benjamin and
Sch{\"u}tze, Hinrich},
editor = "Linzen, Tal and
Chrupa{\l}a, Grzegorz and
Alishahi, Afra",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5437/",
doi = "10.18653/v1/W18-5437",
pages = "325--327",
abstract = "Input optimization methods, such as Google Deep Dream, create interpretable representations of neurons for computer vision DNNs. We propose and evaluate ways of transferring this technology to NLP. Our results suggest that gradient ascent with a gumbel softmax layer produces n-gram representations that outperform naive corpus search in terms of target neuron activation. The representations highlight differences in syntax awareness between the language and visual models of the Imaginet architecture."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="poerner-etal-2018-interpretable">
<titleInfo>
<title>Interpretable Textual Neuron Representations for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Poerner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hinrich</namePart>
<namePart type="family">Schütze</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Chrupała</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afra</namePart>
<namePart type="family">Alishahi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Input optimization methods, such as Google Deep Dream, create interpretable representations of neurons for computer vision DNNs. We propose and evaluate ways of transferring this technology to NLP. Our results suggest that gradient ascent with a gumbel softmax layer produces n-gram representations that outperform naive corpus search in terms of target neuron activation. The representations highlight differences in syntax awareness between the language and visual models of the Imaginet architecture.</abstract>
<identifier type="citekey">poerner-etal-2018-interpretable</identifier>
<identifier type="doi">10.18653/v1/W18-5437</identifier>
<location>
<url>https://aclanthology.org/W18-5437/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>325</start>
<end>327</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interpretable Textual Neuron Representations for NLP
%A Poerner, Nina
%A Roth, Benjamin
%A Schütze, Hinrich
%Y Linzen, Tal
%Y Chrupała, Grzegorz
%Y Alishahi, Afra
%S Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F poerner-etal-2018-interpretable
%X Input optimization methods, such as Google Deep Dream, create interpretable representations of neurons for computer vision DNNs. We propose and evaluate ways of transferring this technology to NLP. Our results suggest that gradient ascent with a gumbel softmax layer produces n-gram representations that outperform naive corpus search in terms of target neuron activation. The representations highlight differences in syntax awareness between the language and visual models of the Imaginet architecture.
%R 10.18653/v1/W18-5437
%U https://aclanthology.org/W18-5437/
%U https://doi.org/10.18653/v1/W18-5437
%P 325-327
Markdown (Informal)
[Interpretable Textual Neuron Representations for NLP](https://aclanthology.org/W18-5437/) (Poerner et al., EMNLP 2018)
ACL
- Nina Poerner, Benjamin Roth, and Hinrich Schütze. 2018. Interpretable Textual Neuron Representations for NLP. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 325–327, Brussels, Belgium. Association for Computational Linguistics.