@inproceedings{vania-lopez-2018-explicitly,
title = "Explicitly modeling case improves neural dependency parsing",
author = "Vania, Clara and
Lopez, Adam",
editor = "Linzen, Tal and
Chrupa{\l}a, Grzegorz and
Alishahi, Afra",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5447/",
doi = "10.18653/v1/W18-5447",
pages = "356--358",
abstract = "Neural dependency parsing models that compose word representations from characters can presumably exploit morphosyntax when making attachment decisions. How much do they know about morphology? We investigate how well they handle morphological case, which is important for parsing. Our experiments on Czech, German and Russian suggest that adding explicit morphological case{---}either oracle or predicted{---}improves neural dependency parsing, indicating that the learned representations in these models do not fully encode the morphological knowledge that they need, and can still benefit from targeted forms of explicit linguistic modeling."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vania-lopez-2018-explicitly">
<titleInfo>
<title>Explicitly modeling case improves neural dependency parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Clara</namePart>
<namePart type="family">Vania</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Lopez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Chrupała</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afra</namePart>
<namePart type="family">Alishahi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Neural dependency parsing models that compose word representations from characters can presumably exploit morphosyntax when making attachment decisions. How much do they know about morphology? We investigate how well they handle morphological case, which is important for parsing. Our experiments on Czech, German and Russian suggest that adding explicit morphological case—either oracle or predicted—improves neural dependency parsing, indicating that the learned representations in these models do not fully encode the morphological knowledge that they need, and can still benefit from targeted forms of explicit linguistic modeling.</abstract>
<identifier type="citekey">vania-lopez-2018-explicitly</identifier>
<identifier type="doi">10.18653/v1/W18-5447</identifier>
<location>
<url>https://aclanthology.org/W18-5447/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>356</start>
<end>358</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explicitly modeling case improves neural dependency parsing
%A Vania, Clara
%A Lopez, Adam
%Y Linzen, Tal
%Y Chrupała, Grzegorz
%Y Alishahi, Afra
%S Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F vania-lopez-2018-explicitly
%X Neural dependency parsing models that compose word representations from characters can presumably exploit morphosyntax when making attachment decisions. How much do they know about morphology? We investigate how well they handle morphological case, which is important for parsing. Our experiments on Czech, German and Russian suggest that adding explicit morphological case—either oracle or predicted—improves neural dependency parsing, indicating that the learned representations in these models do not fully encode the morphological knowledge that they need, and can still benefit from targeted forms of explicit linguistic modeling.
%R 10.18653/v1/W18-5447
%U https://aclanthology.org/W18-5447/
%U https://doi.org/10.18653/v1/W18-5447
%P 356-358
Markdown (Informal)
[Explicitly modeling case improves neural dependency parsing](https://aclanthology.org/W18-5447/) (Vania & Lopez, EMNLP 2018)
ACL