@inproceedings{naderi-hirst-2018-automated,
title = "Automated Fact-Checking of Claims in Argumentative Parliamentary Debates",
author = "Naderi, Nona and
Hirst, Graeme",
editor = "Thorne, James and
Vlachos, Andreas and
Cocarascu, Oana and
Christodoulopoulos, Christos and
Mittal, Arpit",
booktitle = "Proceedings of the First Workshop on Fact Extraction and {VER}ification ({FEVER})",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5509",
doi = "10.18653/v1/W18-5509",
pages = "60--65",
abstract = "We present an automated approach to distinguish true, false, stretch, and dodge statements in questions and answers in the Canadian Parliament. We leverage the truthfulness annotations of a U.S. fact-checking corpus by training a neural net model and incorporating the prediction probabilities into our models. We find that in concert with other linguistic features, these probabilities can improve the multi-class classification results. We further show that dodge statements can be detected with an F1 measure as high as 82.57{\%} in binary classification settings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="naderi-hirst-2018-automated">
<titleInfo>
<title>Automated Fact-Checking of Claims in Argumentative Parliamentary Debates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nona</namePart>
<namePart type="family">Naderi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graeme</namePart>
<namePart type="family">Hirst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an automated approach to distinguish true, false, stretch, and dodge statements in questions and answers in the Canadian Parliament. We leverage the truthfulness annotations of a U.S. fact-checking corpus by training a neural net model and incorporating the prediction probabilities into our models. We find that in concert with other linguistic features, these probabilities can improve the multi-class classification results. We further show that dodge statements can be detected with an F1 measure as high as 82.57% in binary classification settings.</abstract>
<identifier type="citekey">naderi-hirst-2018-automated</identifier>
<identifier type="doi">10.18653/v1/W18-5509</identifier>
<location>
<url>https://aclanthology.org/W18-5509</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>60</start>
<end>65</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Automated Fact-Checking of Claims in Argumentative Parliamentary Debates
%A Naderi, Nona
%A Hirst, Graeme
%Y Thorne, James
%Y Vlachos, Andreas
%Y Cocarascu, Oana
%Y Christodoulopoulos, Christos
%Y Mittal, Arpit
%S Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F naderi-hirst-2018-automated
%X We present an automated approach to distinguish true, false, stretch, and dodge statements in questions and answers in the Canadian Parliament. We leverage the truthfulness annotations of a U.S. fact-checking corpus by training a neural net model and incorporating the prediction probabilities into our models. We find that in concert with other linguistic features, these probabilities can improve the multi-class classification results. We further show that dodge statements can be detected with an F1 measure as high as 82.57% in binary classification settings.
%R 10.18653/v1/W18-5509
%U https://aclanthology.org/W18-5509
%U https://doi.org/10.18653/v1/W18-5509
%P 60-65
Markdown (Informal)
[Automated Fact-Checking of Claims in Argumentative Parliamentary Debates](https://aclanthology.org/W18-5509) (Naderi & Hirst, EMNLP 2018)
ACL