@inproceedings{nguyen-etal-2018-treatment,
title = "Treatment Side Effect Prediction from Online User-generated Content",
author = "Nguyen, Van Hoang and
Sugiyama, Kazunari and
Kan, Min-Yen and
Halder, Kishaloy",
editor = "Lavelli, Alberto and
Minard, Anne-Lyse and
Rinaldi, Fabio",
booktitle = "Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5602/",
doi = "10.18653/v1/W18-5602",
pages = "12--21",
abstract = "With Health 2.0, patients and caregivers increasingly seek information regarding possible drug side effects during their medical treatments in online health communities. These are helpful platforms for non-professional medical opinions, yet pose risk of being unreliable in quality and insufficient in quantity to cover the wide range of potential drug reactions. Existing approaches which analyze such user-generated content in online forums heavily rely on feature engineering of both documents and users, and often overlook the relationships between posts within a common discussion thread. Inspired by recent advancements, we propose a neural architecture that models the textual content of user-generated documents and user experiences in online communities to predict side effects during treatment. Experimental results show that our proposed architecture outperforms baseline models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-etal-2018-treatment">
<titleInfo>
<title>Treatment Side Effect Prediction from Online User-generated Content</title>
</titleInfo>
<name type="personal">
<namePart type="given">Van</namePart>
<namePart type="given">Hoang</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazunari</namePart>
<namePart type="family">Sugiyama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kishaloy</namePart>
<namePart type="family">Halder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With Health 2.0, patients and caregivers increasingly seek information regarding possible drug side effects during their medical treatments in online health communities. These are helpful platforms for non-professional medical opinions, yet pose risk of being unreliable in quality and insufficient in quantity to cover the wide range of potential drug reactions. Existing approaches which analyze such user-generated content in online forums heavily rely on feature engineering of both documents and users, and often overlook the relationships between posts within a common discussion thread. Inspired by recent advancements, we propose a neural architecture that models the textual content of user-generated documents and user experiences in online communities to predict side effects during treatment. Experimental results show that our proposed architecture outperforms baseline models.</abstract>
<identifier type="citekey">nguyen-etal-2018-treatment</identifier>
<identifier type="doi">10.18653/v1/W18-5602</identifier>
<location>
<url>https://aclanthology.org/W18-5602/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>12</start>
<end>21</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Treatment Side Effect Prediction from Online User-generated Content
%A Nguyen, Van Hoang
%A Sugiyama, Kazunari
%A Kan, Min-Yen
%A Halder, Kishaloy
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Rinaldi, Fabio
%S Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F nguyen-etal-2018-treatment
%X With Health 2.0, patients and caregivers increasingly seek information regarding possible drug side effects during their medical treatments in online health communities. These are helpful platforms for non-professional medical opinions, yet pose risk of being unreliable in quality and insufficient in quantity to cover the wide range of potential drug reactions. Existing approaches which analyze such user-generated content in online forums heavily rely on feature engineering of both documents and users, and often overlook the relationships between posts within a common discussion thread. Inspired by recent advancements, we propose a neural architecture that models the textual content of user-generated documents and user experiences in online communities to predict side effects during treatment. Experimental results show that our proposed architecture outperforms baseline models.
%R 10.18653/v1/W18-5602
%U https://aclanthology.org/W18-5602/
%U https://doi.org/10.18653/v1/W18-5602
%P 12-21
Markdown (Informal)
[Treatment Side Effect Prediction from Online User-generated Content](https://aclanthology.org/W18-5602/) (Nguyen et al., Louhi 2018)
ACL