@inproceedings{kaur-molla-2018-supervised,
title = "Supervised Machine Learning for Extractive Query Based Summarisation of Biomedical Data",
author = "Kaur, Mandeep and
Moll{\'a}, Diego",
editor = "Lavelli, Alberto and
Minard, Anne-Lyse and
Rinaldi, Fabio",
booktitle = "Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5604/",
doi = "10.18653/v1/W18-5604",
pages = "29--37",
abstract = "The automation of text summarisation of biomedical publications is a pressing need due to the plethora of information available online. This paper explores the impact of several supervised machine learning approaches for extracting multi-document summaries for given queries. In particular, we compare classification and regression approaches for query-based extractive summarisation using data provided by the BioASQ Challenge. We tackled the problem of annotating sentences for training classification systems and show that a simple annotation approach outperforms regression-based summarisation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kaur-molla-2018-supervised">
<titleInfo>
<title>Supervised Machine Learning for Extractive Query Based Summarisation of Biomedical Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mandeep</namePart>
<namePart type="family">Kaur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diego</namePart>
<namePart type="family">Mollá</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The automation of text summarisation of biomedical publications is a pressing need due to the plethora of information available online. This paper explores the impact of several supervised machine learning approaches for extracting multi-document summaries for given queries. In particular, we compare classification and regression approaches for query-based extractive summarisation using data provided by the BioASQ Challenge. We tackled the problem of annotating sentences for training classification systems and show that a simple annotation approach outperforms regression-based summarisation.</abstract>
<identifier type="citekey">kaur-molla-2018-supervised</identifier>
<identifier type="doi">10.18653/v1/W18-5604</identifier>
<location>
<url>https://aclanthology.org/W18-5604/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>29</start>
<end>37</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Supervised Machine Learning for Extractive Query Based Summarisation of Biomedical Data
%A Kaur, Mandeep
%A Mollá, Diego
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Rinaldi, Fabio
%S Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kaur-molla-2018-supervised
%X The automation of text summarisation of biomedical publications is a pressing need due to the plethora of information available online. This paper explores the impact of several supervised machine learning approaches for extracting multi-document summaries for given queries. In particular, we compare classification and regression approaches for query-based extractive summarisation using data provided by the BioASQ Challenge. We tackled the problem of annotating sentences for training classification systems and show that a simple annotation approach outperforms regression-based summarisation.
%R 10.18653/v1/W18-5604
%U https://aclanthology.org/W18-5604/
%U https://doi.org/10.18653/v1/W18-5604
%P 29-37
Markdown (Informal)
[Supervised Machine Learning for Extractive Query Based Summarisation of Biomedical Data](https://aclanthology.org/W18-5604/) (Kaur & Mollá, Louhi 2018)
ACL