@inproceedings{girardi-etal-2018-patient,
title = "Patient Risk Assessment and Warning Symptom Detection Using Deep Attention-Based Neural Networks",
author = "Girardi, Ivan and
Ji, Pengfei and
Nguyen, An-phi and
Hollenstein, Nora and
Ivankay, Adam and
Kuhn, Lorenz and
Marchiori, Chiara and
Zhang, Ce",
editor = "Lavelli, Alberto and
Minard, Anne-Lyse and
Rinaldi, Fabio",
booktitle = "Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5616",
doi = "10.18653/v1/W18-5616",
pages = "139--148",
abstract = "We present an operational component of a real-world patient triage system. Given a specific patient presentation, the system is able to assess the level of medical urgency and issue the most appropriate recommendation in terms of best \textit{point of care} and \textit{time to treat}. We use an attention-based convolutional neural network architecture trained on 600,000 doctor notes in German. We compare two approaches, one that uses the full text of the medical notes and one that uses only a selected list of medical entities extracted from the text. These approaches achieve 79{\%} and 66{\%} precision, respectively, but on a confidence threshold of 0.6, precision increases to 85{\%} and 75{\%}, respectively. In addition, a method to detect \textit{warning symptoms} is implemented to render the classification task transparent from a medical perspective. The method is based on the learning of attention scores and a method of automatic validation using the same data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="girardi-etal-2018-patient">
<titleInfo>
<title>Patient Risk Assessment and Warning Symptom Detection Using Deep Attention-Based Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Girardi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pengfei</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">An-phi</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nora</namePart>
<namePart type="family">Hollenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Adam</namePart>
<namePart type="family">Ivankay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lorenz</namePart>
<namePart type="family">Kuhn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chiara</namePart>
<namePart type="family">Marchiori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ce</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alberto</namePart>
<namePart type="family">Lavelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne-Lyse</namePart>
<namePart type="family">Minard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an operational component of a real-world patient triage system. Given a specific patient presentation, the system is able to assess the level of medical urgency and issue the most appropriate recommendation in terms of best point of care and time to treat. We use an attention-based convolutional neural network architecture trained on 600,000 doctor notes in German. We compare two approaches, one that uses the full text of the medical notes and one that uses only a selected list of medical entities extracted from the text. These approaches achieve 79% and 66% precision, respectively, but on a confidence threshold of 0.6, precision increases to 85% and 75%, respectively. In addition, a method to detect warning symptoms is implemented to render the classification task transparent from a medical perspective. The method is based on the learning of attention scores and a method of automatic validation using the same data.</abstract>
<identifier type="citekey">girardi-etal-2018-patient</identifier>
<identifier type="doi">10.18653/v1/W18-5616</identifier>
<location>
<url>https://aclanthology.org/W18-5616</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>139</start>
<end>148</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Patient Risk Assessment and Warning Symptom Detection Using Deep Attention-Based Neural Networks
%A Girardi, Ivan
%A Ji, Pengfei
%A Nguyen, An-phi
%A Hollenstein, Nora
%A Ivankay, Adam
%A Kuhn, Lorenz
%A Marchiori, Chiara
%A Zhang, Ce
%Y Lavelli, Alberto
%Y Minard, Anne-Lyse
%Y Rinaldi, Fabio
%S Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F girardi-etal-2018-patient
%X We present an operational component of a real-world patient triage system. Given a specific patient presentation, the system is able to assess the level of medical urgency and issue the most appropriate recommendation in terms of best point of care and time to treat. We use an attention-based convolutional neural network architecture trained on 600,000 doctor notes in German. We compare two approaches, one that uses the full text of the medical notes and one that uses only a selected list of medical entities extracted from the text. These approaches achieve 79% and 66% precision, respectively, but on a confidence threshold of 0.6, precision increases to 85% and 75%, respectively. In addition, a method to detect warning symptoms is implemented to render the classification task transparent from a medical perspective. The method is based on the learning of attention scores and a method of automatic validation using the same data.
%R 10.18653/v1/W18-5616
%U https://aclanthology.org/W18-5616
%U https://doi.org/10.18653/v1/W18-5616
%P 139-148
Markdown (Informal)
[Patient Risk Assessment and Warning Symptom Detection Using Deep Attention-Based Neural Networks](https://aclanthology.org/W18-5616) (Girardi et al., Louhi 2018)
ACL
- Ivan Girardi, Pengfei Ji, An-phi Nguyen, Nora Hollenstein, Adam Ivankay, Lorenz Kuhn, Chiara Marchiori, and Ce Zhang. 2018. Patient Risk Assessment and Warning Symptom Detection Using Deep Attention-Based Neural Networks. In Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis, pages 139–148, Brussels, Belgium. Association for Computational Linguistics.