@inproceedings{tokala-etal-2018-deep,
title = "Deep Learning for Social Media Health Text Classification",
author = "T.y.s.s, Santosh and
Tokala, Santosh and
Gambhir, Vaibhav and
Mukherjee, Animesh",
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy and
Sarker, Abeed and
Paul, Michael",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop {SMM}4{H}: The 3rd Social Media Mining for Health Applications Workshop {\&} Shared Task",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5917",
doi = "10.18653/v1/W18-5917",
pages = "61--64",
abstract = "This paper describes the systems developed for 1st and 2nd tasks of the 3rd Social Media Mining for Health Applications Shared Task at EMNLP 2018. The first task focuses on automatic detection of posts mentioning a drug name or dietary supplement, a binary classification. The second task is about distinguishing the tweets that present personal medication intake, possible medication intake and non-intake. We performed extensive experiments with various classifiers like Logistic Regression, Random Forest, SVMs, Gradient Boosted Decision Trees (GBDT) and deep learning architectures such as Long Short-Term Memory Networks (LSTM), jointed Convolutional Neural Networks (CNN) and LSTM architecture, and attention based LSTM architecture both at word and character level. We have also explored using various pre-trained embeddings like Global Vectors for Word Representation (GloVe), Word2Vec and task-specific embeddings learned using CNN-LSTM and LSTMs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tokala-etal-2018-deep">
<titleInfo>
<title>Deep Learning for Social Media Health Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Santosh</namePart>
<namePart type="family">T.y.s.s</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Santosh</namePart>
<namePart type="family">Tokala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vaibhav</namePart>
<namePart type="family">Gambhir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Animesh</namePart>
<namePart type="family">Mukherjee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abeed</namePart>
<namePart type="family">Sarker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Paul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the systems developed for 1st and 2nd tasks of the 3rd Social Media Mining for Health Applications Shared Task at EMNLP 2018. The first task focuses on automatic detection of posts mentioning a drug name or dietary supplement, a binary classification. The second task is about distinguishing the tweets that present personal medication intake, possible medication intake and non-intake. We performed extensive experiments with various classifiers like Logistic Regression, Random Forest, SVMs, Gradient Boosted Decision Trees (GBDT) and deep learning architectures such as Long Short-Term Memory Networks (LSTM), jointed Convolutional Neural Networks (CNN) and LSTM architecture, and attention based LSTM architecture both at word and character level. We have also explored using various pre-trained embeddings like Global Vectors for Word Representation (GloVe), Word2Vec and task-specific embeddings learned using CNN-LSTM and LSTMs.</abstract>
<identifier type="citekey">tokala-etal-2018-deep</identifier>
<identifier type="doi">10.18653/v1/W18-5917</identifier>
<location>
<url>https://aclanthology.org/W18-5917</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>61</start>
<end>64</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Learning for Social Media Health Text Classification
%A T.y.s.s, Santosh
%A Tokala, Santosh
%A Gambhir, Vaibhav
%A Mukherjee, Animesh
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%Y Sarker, Abeed
%Y Paul, Michael
%S Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F tokala-etal-2018-deep
%X This paper describes the systems developed for 1st and 2nd tasks of the 3rd Social Media Mining for Health Applications Shared Task at EMNLP 2018. The first task focuses on automatic detection of posts mentioning a drug name or dietary supplement, a binary classification. The second task is about distinguishing the tweets that present personal medication intake, possible medication intake and non-intake. We performed extensive experiments with various classifiers like Logistic Regression, Random Forest, SVMs, Gradient Boosted Decision Trees (GBDT) and deep learning architectures such as Long Short-Term Memory Networks (LSTM), jointed Convolutional Neural Networks (CNN) and LSTM architecture, and attention based LSTM architecture both at word and character level. We have also explored using various pre-trained embeddings like Global Vectors for Word Representation (GloVe), Word2Vec and task-specific embeddings learned using CNN-LSTM and LSTMs.
%R 10.18653/v1/W18-5917
%U https://aclanthology.org/W18-5917
%U https://doi.org/10.18653/v1/W18-5917
%P 61-64
Markdown (Informal)
[Deep Learning for Social Media Health Text Classification](https://aclanthology.org/W18-5917) (T.y.s.s et al., EMNLP 2018)
ACL
- Santosh T.y.s.s, Santosh Tokala, Vaibhav Gambhir, and Animesh Mukherjee. 2018. Deep Learning for Social Media Health Text Classification. In Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task, pages 61–64, Brussels, Belgium. Association for Computational Linguistics.