@inproceedings{rissola-etal-2018-usi,
title = "{USI}-{IR} at {IEST} 2018: Sequence Modeling and Pseudo-Relevance Feedback for Implicit Emotion Detection",
author = "R{\'i}ssola, Esteban and
Giachanou, Anastasia and
Crestani, Fabio",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6233/",
doi = "10.18653/v1/W18-6233",
pages = "231--234",
abstract = "This paper describes the participation of USI-IR in WASSA 2018 Implicit Emotion Shared Task. We propose a relevance feedback approach employing a sequential model (biLSTM) and word embeddings derived from a large collection of tweets. To this end, we assume that the top-\textit{k} predictions produce at a first classification step are correct (based on the model accuracy) and use them as new examples to re-train the network."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rissola-etal-2018-usi">
<titleInfo>
<title>USI-IR at IEST 2018: Sequence Modeling and Pseudo-Relevance Feedback for Implicit Emotion Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Esteban</namePart>
<namePart type="family">Ríssola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Giachanou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fabio</namePart>
<namePart type="family">Crestani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the participation of USI-IR in WASSA 2018 Implicit Emotion Shared Task. We propose a relevance feedback approach employing a sequential model (biLSTM) and word embeddings derived from a large collection of tweets. To this end, we assume that the top-k predictions produce at a first classification step are correct (based on the model accuracy) and use them as new examples to re-train the network.</abstract>
<identifier type="citekey">rissola-etal-2018-usi</identifier>
<identifier type="doi">10.18653/v1/W18-6233</identifier>
<location>
<url>https://aclanthology.org/W18-6233/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>231</start>
<end>234</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T USI-IR at IEST 2018: Sequence Modeling and Pseudo-Relevance Feedback for Implicit Emotion Detection
%A Ríssola, Esteban
%A Giachanou, Anastasia
%A Crestani, Fabio
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F rissola-etal-2018-usi
%X This paper describes the participation of USI-IR in WASSA 2018 Implicit Emotion Shared Task. We propose a relevance feedback approach employing a sequential model (biLSTM) and word embeddings derived from a large collection of tweets. To this end, we assume that the top-k predictions produce at a first classification step are correct (based on the model accuracy) and use them as new examples to re-train the network.
%R 10.18653/v1/W18-6233
%U https://aclanthology.org/W18-6233/
%U https://doi.org/10.18653/v1/W18-6233
%P 231-234
Markdown (Informal)
[USI-IR at IEST 2018: Sequence Modeling and Pseudo-Relevance Feedback for Implicit Emotion Detection](https://aclanthology.org/W18-6233/) (Ríssola et al., WASSA 2018)
ACL