@inproceedings{marcheggiani-perez-beltrachini-2018-deep,
    title = "Deep Graph Convolutional Encoders for Structured Data to Text Generation",
    author = "Marcheggiani, Diego  and
      Perez-Beltrachini, Laura",
    editor = "Krahmer, Emiel  and
      Gatt, Albert  and
      Goudbeek, Martijn",
    booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
    month = nov,
    year = "2018",
    address = "Tilburg University, The Netherlands",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-6501/",
    doi = "10.18653/v1/W18-6501",
    pages = "1--9",
    abstract = "Most previous work on neural text generation from graph-structured data relies on standard sequence-to-sequence methods. These approaches linearise the input graph to be fed to a recurrent neural network. In this paper, we propose an alternative encoder based on graph convolutional networks that directly exploits the input structure. We report results on two graph-to-sequence datasets that empirically show the benefits of explicitly encoding the input graph structure."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marcheggiani-perez-beltrachini-2018-deep">
    <titleInfo>
        <title>Deep Graph Convolutional Encoders for Structured Data to Text Generation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Diego</namePart>
        <namePart type="family">Marcheggiani</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Laura</namePart>
        <namePart type="family">Perez-Beltrachini</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 11th International Conference on Natural Language Generation</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Emiel</namePart>
            <namePart type="family">Krahmer</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Albert</namePart>
            <namePart type="family">Gatt</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Martijn</namePart>
            <namePart type="family">Goudbeek</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Most previous work on neural text generation from graph-structured data relies on standard sequence-to-sequence methods. These approaches linearise the input graph to be fed to a recurrent neural network. In this paper, we propose an alternative encoder based on graph convolutional networks that directly exploits the input structure. We report results on two graph-to-sequence datasets that empirically show the benefits of explicitly encoding the input graph structure.</abstract>
    <identifier type="citekey">marcheggiani-perez-beltrachini-2018-deep</identifier>
    <identifier type="doi">10.18653/v1/W18-6501</identifier>
    <location>
        <url>https://aclanthology.org/W18-6501/</url>
    </location>
    <part>
        <date>2018-11</date>
        <extent unit="page">
            <start>1</start>
            <end>9</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Graph Convolutional Encoders for Structured Data to Text Generation
%A Marcheggiani, Diego
%A Perez-Beltrachini, Laura
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F marcheggiani-perez-beltrachini-2018-deep
%X Most previous work on neural text generation from graph-structured data relies on standard sequence-to-sequence methods. These approaches linearise the input graph to be fed to a recurrent neural network. In this paper, we propose an alternative encoder based on graph convolutional networks that directly exploits the input structure. We report results on two graph-to-sequence datasets that empirically show the benefits of explicitly encoding the input graph structure.
%R 10.18653/v1/W18-6501
%U https://aclanthology.org/W18-6501/
%U https://doi.org/10.18653/v1/W18-6501
%P 1-9
Markdown (Informal)
[Deep Graph Convolutional Encoders for Structured Data to Text Generation](https://aclanthology.org/W18-6501/) (Marcheggiani & Perez-Beltrachini, INLG 2018)
ACL