@inproceedings{marcheggiani-perez-beltrachini-2018-deep,
title = "Deep Graph Convolutional Encoders for Structured Data to Text Generation",
author = "Marcheggiani, Diego and
Perez-Beltrachini, Laura",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6501/",
doi = "10.18653/v1/W18-6501",
pages = "1--9",
abstract = "Most previous work on neural text generation from graph-structured data relies on standard sequence-to-sequence methods. These approaches linearise the input graph to be fed to a recurrent neural network. In this paper, we propose an alternative encoder based on graph convolutional networks that directly exploits the input structure. We report results on two graph-to-sequence datasets that empirically show the benefits of explicitly encoding the input graph structure."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marcheggiani-perez-beltrachini-2018-deep">
<titleInfo>
<title>Deep Graph Convolutional Encoders for Structured Data to Text Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Diego</namePart>
<namePart type="family">Marcheggiani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laura</namePart>
<namePart type="family">Perez-Beltrachini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most previous work on neural text generation from graph-structured data relies on standard sequence-to-sequence methods. These approaches linearise the input graph to be fed to a recurrent neural network. In this paper, we propose an alternative encoder based on graph convolutional networks that directly exploits the input structure. We report results on two graph-to-sequence datasets that empirically show the benefits of explicitly encoding the input graph structure.</abstract>
<identifier type="citekey">marcheggiani-perez-beltrachini-2018-deep</identifier>
<identifier type="doi">10.18653/v1/W18-6501</identifier>
<location>
<url>https://aclanthology.org/W18-6501/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>1</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep Graph Convolutional Encoders for Structured Data to Text Generation
%A Marcheggiani, Diego
%A Perez-Beltrachini, Laura
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F marcheggiani-perez-beltrachini-2018-deep
%X Most previous work on neural text generation from graph-structured data relies on standard sequence-to-sequence methods. These approaches linearise the input graph to be fed to a recurrent neural network. In this paper, we propose an alternative encoder based on graph convolutional networks that directly exploits the input structure. We report results on two graph-to-sequence datasets that empirically show the benefits of explicitly encoding the input graph structure.
%R 10.18653/v1/W18-6501
%U https://aclanthology.org/W18-6501/
%U https://doi.org/10.18653/v1/W18-6501
%P 1-9
Markdown (Informal)
[Deep Graph Convolutional Encoders for Structured Data to Text Generation](https://aclanthology.org/W18-6501/) (Marcheggiani & Perez-Beltrachini, INLG 2018)
ACL