@inproceedings{song-etal-2018-neural,
title = "Neural Transition-based Syntactic Linearization",
author = "Song, Linfeng and
Zhang, Yue and
Gildea, Daniel",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6553/",
doi = "10.18653/v1/W18-6553",
pages = "431--440",
abstract = "The task of linearization is to find a grammatical order given a set of words. Traditional models use statistical methods. Syntactic linearization systems, which generate a sentence along with its syntactic tree, have shown state-of-the-art performance. Recent work shows that a multilayer LSTM language model outperforms competitive statistical syntactic linearization systems without using syntax. In this paper, we study neural syntactic linearization, building a transition-based syntactic linearizer leveraging a feed forward neural network, observing significantly better results compared to LSTM language models on this task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="song-etal-2018-neural">
<titleInfo>
<title>Neural Transition-based Syntactic Linearization</title>
</titleInfo>
<name type="personal">
<namePart type="given">Linfeng</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Gildea</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The task of linearization is to find a grammatical order given a set of words. Traditional models use statistical methods. Syntactic linearization systems, which generate a sentence along with its syntactic tree, have shown state-of-the-art performance. Recent work shows that a multilayer LSTM language model outperforms competitive statistical syntactic linearization systems without using syntax. In this paper, we study neural syntactic linearization, building a transition-based syntactic linearizer leveraging a feed forward neural network, observing significantly better results compared to LSTM language models on this task.</abstract>
<identifier type="citekey">song-etal-2018-neural</identifier>
<identifier type="doi">10.18653/v1/W18-6553</identifier>
<location>
<url>https://aclanthology.org/W18-6553/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>431</start>
<end>440</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Transition-based Syntactic Linearization
%A Song, Linfeng
%A Zhang, Yue
%A Gildea, Daniel
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F song-etal-2018-neural
%X The task of linearization is to find a grammatical order given a set of words. Traditional models use statistical methods. Syntactic linearization systems, which generate a sentence along with its syntactic tree, have shown state-of-the-art performance. Recent work shows that a multilayer LSTM language model outperforms competitive statistical syntactic linearization systems without using syntax. In this paper, we study neural syntactic linearization, building a transition-based syntactic linearizer leveraging a feed forward neural network, observing significantly better results compared to LSTM language models on this task.
%R 10.18653/v1/W18-6553
%U https://aclanthology.org/W18-6553/
%U https://doi.org/10.18653/v1/W18-6553
%P 431-440
Markdown (Informal)
[Neural Transition-based Syntactic Linearization](https://aclanthology.org/W18-6553/) (Song et al., INLG 2018)
ACL
- Linfeng Song, Yue Zhang, and Daniel Gildea. 2018. Neural Transition-based Syntactic Linearization. In Proceedings of the 11th International Conference on Natural Language Generation, pages 431–440, Tilburg University, The Netherlands. Association for Computational Linguistics.