@inproceedings{agarwal-etal-2018-char2char,
title = "Char2char Generation with Reranking for the {E}2{E} {NLG} Challenge",
author = "Agarwal, Shubham and
Dymetman, Marc and
Gaussier, {\'E}ric",
editor = "Krahmer, Emiel and
Gatt, Albert and
Goudbeek, Martijn",
booktitle = "Proceedings of the 11th International Conference on Natural Language Generation",
month = nov,
year = "2018",
address = "Tilburg University, The Netherlands",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6555",
doi = "10.18653/v1/W18-6555",
pages = "451--456",
abstract = "This paper describes our submission to the E2E NLG Challenge. Recently, neural seq2seq approaches have become mainstream in NLG, often resorting to pre- (respectively post-) processing \textit{delexicalization} (relexicalization) steps at the word-level to handle rare words. By contrast, we train a simple character level seq2seq model, which requires no pre/post-processing (delexicalization, tokenization or even lowercasing), with surprisingly good results. For further improvement, we explore two re-ranking approaches for scoring candidates. We also introduce a synthetic dataset creation procedure, which opens up a new way of creating artificial datasets for Natural Language Generation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="agarwal-etal-2018-char2char">
<titleInfo>
<title>Char2char Generation with Reranking for the E2E NLG Challenge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shubham</namePart>
<namePart type="family">Agarwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc</namePart>
<namePart type="family">Dymetman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Éric</namePart>
<namePart type="family">Gaussier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emiel</namePart>
<namePart type="family">Krahmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Gatt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Martijn</namePart>
<namePart type="family">Goudbeek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tilburg University, The Netherlands</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our submission to the E2E NLG Challenge. Recently, neural seq2seq approaches have become mainstream in NLG, often resorting to pre- (respectively post-) processing delexicalization (relexicalization) steps at the word-level to handle rare words. By contrast, we train a simple character level seq2seq model, which requires no pre/post-processing (delexicalization, tokenization or even lowercasing), with surprisingly good results. For further improvement, we explore two re-ranking approaches for scoring candidates. We also introduce a synthetic dataset creation procedure, which opens up a new way of creating artificial datasets for Natural Language Generation.</abstract>
<identifier type="citekey">agarwal-etal-2018-char2char</identifier>
<identifier type="doi">10.18653/v1/W18-6555</identifier>
<location>
<url>https://aclanthology.org/W18-6555</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>451</start>
<end>456</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Char2char Generation with Reranking for the E2E NLG Challenge
%A Agarwal, Shubham
%A Dymetman, Marc
%A Gaussier, Éric
%Y Krahmer, Emiel
%Y Gatt, Albert
%Y Goudbeek, Martijn
%S Proceedings of the 11th International Conference on Natural Language Generation
%D 2018
%8 November
%I Association for Computational Linguistics
%C Tilburg University, The Netherlands
%F agarwal-etal-2018-char2char
%X This paper describes our submission to the E2E NLG Challenge. Recently, neural seq2seq approaches have become mainstream in NLG, often resorting to pre- (respectively post-) processing delexicalization (relexicalization) steps at the word-level to handle rare words. By contrast, we train a simple character level seq2seq model, which requires no pre/post-processing (delexicalization, tokenization or even lowercasing), with surprisingly good results. For further improvement, we explore two re-ranking approaches for scoring candidates. We also introduce a synthetic dataset creation procedure, which opens up a new way of creating artificial datasets for Natural Language Generation.
%R 10.18653/v1/W18-6555
%U https://aclanthology.org/W18-6555
%U https://doi.org/10.18653/v1/W18-6555
%P 451-456
Markdown (Informal)
[Char2char Generation with Reranking for the E2E NLG Challenge](https://aclanthology.org/W18-6555) (Agarwal et al., INLG 2018)
ACL