@inproceedings{gari-soler-etal-2019-comparison,
title = "A Comparison of Context-sensitive Models for Lexical Substitution",
author = "Gar{\'\i} Soler, Aina and
Cocos, Anne and
Apidianaki, Marianna and
Callison-Burch, Chris",
editor = "Dobnik, Simon and
Chatzikyriakidis, Stergios and
Demberg, Vera",
booktitle = "Proceedings of the 13th International Conference on Computational Semantics - Long Papers",
month = may,
year = "2019",
address = "Gothenburg, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-0423",
doi = "10.18653/v1/W19-0423",
pages = "271--282",
abstract = "Word embedding representations provide good estimates of word meaning and give state-of-the art performance in semantic tasks. Embedding approaches differ as to whether and how they account for the context surrounding a word. We present a comparison of different word and context representations on the task of proposing substitutes for a target word in context (lexical substitution). We also experiment with tuning contextualized word embeddings on a dataset of sense-specific instances for each target word. We show that powerful contextualized word representations, which give high performance in several semantics-related tasks, deal less well with the subtle in-context similarity relationships needed for substitution. This is better handled by models trained with this objective in mind, where the inter-dependence between word and context representations is explicitly modeled during training.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gari-soler-etal-2019-comparison">
<titleInfo>
<title>A Comparison of Context-sensitive Models for Lexical Substitution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aina</namePart>
<namePart type="family">Garí Soler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Cocos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Callison-Burch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Computational Semantics - Long Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stergios</namePart>
<namePart type="family">Chatzikyriakidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gothenburg, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word embedding representations provide good estimates of word meaning and give state-of-the art performance in semantic tasks. Embedding approaches differ as to whether and how they account for the context surrounding a word. We present a comparison of different word and context representations on the task of proposing substitutes for a target word in context (lexical substitution). We also experiment with tuning contextualized word embeddings on a dataset of sense-specific instances for each target word. We show that powerful contextualized word representations, which give high performance in several semantics-related tasks, deal less well with the subtle in-context similarity relationships needed for substitution. This is better handled by models trained with this objective in mind, where the inter-dependence between word and context representations is explicitly modeled during training.</abstract>
<identifier type="citekey">gari-soler-etal-2019-comparison</identifier>
<identifier type="doi">10.18653/v1/W19-0423</identifier>
<location>
<url>https://aclanthology.org/W19-0423</url>
</location>
<part>
<date>2019-05</date>
<extent unit="page">
<start>271</start>
<end>282</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Comparison of Context-sensitive Models for Lexical Substitution
%A Garí Soler, Aina
%A Cocos, Anne
%A Apidianaki, Marianna
%A Callison-Burch, Chris
%Y Dobnik, Simon
%Y Chatzikyriakidis, Stergios
%Y Demberg, Vera
%S Proceedings of the 13th International Conference on Computational Semantics - Long Papers
%D 2019
%8 May
%I Association for Computational Linguistics
%C Gothenburg, Sweden
%F gari-soler-etal-2019-comparison
%X Word embedding representations provide good estimates of word meaning and give state-of-the art performance in semantic tasks. Embedding approaches differ as to whether and how they account for the context surrounding a word. We present a comparison of different word and context representations on the task of proposing substitutes for a target word in context (lexical substitution). We also experiment with tuning contextualized word embeddings on a dataset of sense-specific instances for each target word. We show that powerful contextualized word representations, which give high performance in several semantics-related tasks, deal less well with the subtle in-context similarity relationships needed for substitution. This is better handled by models trained with this objective in mind, where the inter-dependence between word and context representations is explicitly modeled during training.
%R 10.18653/v1/W19-0423
%U https://aclanthology.org/W19-0423
%U https://doi.org/10.18653/v1/W19-0423
%P 271-282
Markdown (Informal)
[A Comparison of Context-sensitive Models for Lexical Substitution](https://aclanthology.org/W19-0423) (Garí Soler et al., IWCS 2019)
ACL