@inproceedings{van-noord-etal-2019-linguistic,
title = "Linguistic Information in Neural Semantic Parsing with Multiple Encoders",
author = "van Noord, Rik and
Toral, Antonio and
Bos, Johan",
editor = "Dobnik, Simon and
Chatzikyriakidis, Stergios and
Demberg, Vera",
booktitle = "Proceedings of the 13th International Conference on Computational Semantics - Short Papers",
month = may,
year = "2019",
address = "Gothenburg, Sweden",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-0504",
doi = "10.18653/v1/W19-0504",
pages = "24--31",
abstract = "Recently, sequence-to-sequence models have achieved impressive performance on a number of semantic parsing tasks. However, they often do not exploit available linguistic resources, while these, when employed correctly, are likely to increase performance even further. Research in neural machine translation has shown that employing this information has a lot of potential, especially when using a multi-encoder setup. We employ a range of semantic and syntactic resources to improve performance for the task of Discourse Representation Structure Parsing. We show that (i) linguistic features can be beneficial for neural semantic parsing and (ii) the best method of adding these features is by using multiple encoders.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-noord-etal-2019-linguistic">
<titleInfo>
<title>Linguistic Information in Neural Semantic Parsing with Multiple Encoders</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rik</namePart>
<namePart type="family">van Noord</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Antonio</namePart>
<namePart type="family">Toral</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johan</namePart>
<namePart type="family">Bos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Computational Semantics - Short Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Dobnik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stergios</namePart>
<namePart type="family">Chatzikyriakidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vera</namePart>
<namePart type="family">Demberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gothenburg, Sweden</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, sequence-to-sequence models have achieved impressive performance on a number of semantic parsing tasks. However, they often do not exploit available linguistic resources, while these, when employed correctly, are likely to increase performance even further. Research in neural machine translation has shown that employing this information has a lot of potential, especially when using a multi-encoder setup. We employ a range of semantic and syntactic resources to improve performance for the task of Discourse Representation Structure Parsing. We show that (i) linguistic features can be beneficial for neural semantic parsing and (ii) the best method of adding these features is by using multiple encoders.</abstract>
<identifier type="citekey">van-noord-etal-2019-linguistic</identifier>
<identifier type="doi">10.18653/v1/W19-0504</identifier>
<location>
<url>https://aclanthology.org/W19-0504</url>
</location>
<part>
<date>2019-05</date>
<extent unit="page">
<start>24</start>
<end>31</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Linguistic Information in Neural Semantic Parsing with Multiple Encoders
%A van Noord, Rik
%A Toral, Antonio
%A Bos, Johan
%Y Dobnik, Simon
%Y Chatzikyriakidis, Stergios
%Y Demberg, Vera
%S Proceedings of the 13th International Conference on Computational Semantics - Short Papers
%D 2019
%8 May
%I Association for Computational Linguistics
%C Gothenburg, Sweden
%F van-noord-etal-2019-linguistic
%X Recently, sequence-to-sequence models have achieved impressive performance on a number of semantic parsing tasks. However, they often do not exploit available linguistic resources, while these, when employed correctly, are likely to increase performance even further. Research in neural machine translation has shown that employing this information has a lot of potential, especially when using a multi-encoder setup. We employ a range of semantic and syntactic resources to improve performance for the task of Discourse Representation Structure Parsing. We show that (i) linguistic features can be beneficial for neural semantic parsing and (ii) the best method of adding these features is by using multiple encoders.
%R 10.18653/v1/W19-0504
%U https://aclanthology.org/W19-0504
%U https://doi.org/10.18653/v1/W19-0504
%P 24-31
Markdown (Informal)
[Linguistic Information in Neural Semantic Parsing with Multiple Encoders](https://aclanthology.org/W19-0504) (van Noord et al., IWCS 2019)
ACL