@inproceedings{huck-etal-2019-cross,
title = "Cross-lingual Annotation Projection Is Effective for Neural Part-of-Speech Tagging",
author = "Huck, Matthias and
Dutka, Diana and
Fraser, Alexander",
editor = {Zampieri, Marcos and
Nakov, Preslav and
Malmasi, Shervin and
Ljube{\v{s}}i{\'c}, Nikola and
Tiedemann, J{\"o}rg and
Ali, Ahmed},
booktitle = "Proceedings of the Sixth Workshop on {NLP} for Similar Languages, Varieties and Dialects",
month = jun,
year = "2019",
address = "Ann Arbor, Michigan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-1425",
doi = "10.18653/v1/W19-1425",
pages = "223--233",
abstract = "We tackle the important task of part-of-speech tagging using a neural model in the zero-resource scenario, where we have no access to gold-standard POS training data. We compare this scenario with the low-resource scenario, where we have access to a small amount of gold-standard POS training data. Our experiments focus on Ukrainian as a representative of under-resourced languages. Russian is highly related to Ukrainian, so we exploit gold-standard Russian POS tags. We consider four techniques to perform Ukrainian POS tagging: zero-shot tagging and cross-lingual annotation projection (for the zero-resource scenario), and compare these with self-training and multilingual learning (for the low-resource scenario). We find that cross-lingual annotation projection works particularly well in the zero-resource scenario.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huck-etal-2019-cross">
<titleInfo>
<title>Cross-lingual Annotation Projection Is Effective for Neural Part-of-Speech Tagging</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Huck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diana</namePart>
<namePart type="family">Dutka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Fraser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikola</namePart>
<namePart type="family">Ljubešić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Ali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Ann Arbor, Michigan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We tackle the important task of part-of-speech tagging using a neural model in the zero-resource scenario, where we have no access to gold-standard POS training data. We compare this scenario with the low-resource scenario, where we have access to a small amount of gold-standard POS training data. Our experiments focus on Ukrainian as a representative of under-resourced languages. Russian is highly related to Ukrainian, so we exploit gold-standard Russian POS tags. We consider four techniques to perform Ukrainian POS tagging: zero-shot tagging and cross-lingual annotation projection (for the zero-resource scenario), and compare these with self-training and multilingual learning (for the low-resource scenario). We find that cross-lingual annotation projection works particularly well in the zero-resource scenario.</abstract>
<identifier type="citekey">huck-etal-2019-cross</identifier>
<identifier type="doi">10.18653/v1/W19-1425</identifier>
<location>
<url>https://aclanthology.org/W19-1425</url>
</location>
<part>
<date>2019-06</date>
<extent unit="page">
<start>223</start>
<end>233</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual Annotation Projection Is Effective for Neural Part-of-Speech Tagging
%A Huck, Matthias
%A Dutka, Diana
%A Fraser, Alexander
%Y Zampieri, Marcos
%Y Nakov, Preslav
%Y Malmasi, Shervin
%Y Ljubešić, Nikola
%Y Tiedemann, Jörg
%Y Ali, Ahmed
%S Proceedings of the Sixth Workshop on NLP for Similar Languages, Varieties and Dialects
%D 2019
%8 June
%I Association for Computational Linguistics
%C Ann Arbor, Michigan
%F huck-etal-2019-cross
%X We tackle the important task of part-of-speech tagging using a neural model in the zero-resource scenario, where we have no access to gold-standard POS training data. We compare this scenario with the low-resource scenario, where we have access to a small amount of gold-standard POS training data. Our experiments focus on Ukrainian as a representative of under-resourced languages. Russian is highly related to Ukrainian, so we exploit gold-standard Russian POS tags. We consider four techniques to perform Ukrainian POS tagging: zero-shot tagging and cross-lingual annotation projection (for the zero-resource scenario), and compare these with self-training and multilingual learning (for the low-resource scenario). We find that cross-lingual annotation projection works particularly well in the zero-resource scenario.
%R 10.18653/v1/W19-1425
%U https://aclanthology.org/W19-1425
%U https://doi.org/10.18653/v1/W19-1425
%P 223-233
Markdown (Informal)
[Cross-lingual Annotation Projection Is Effective for Neural Part-of-Speech Tagging](https://aclanthology.org/W19-1425) (Huck et al., VarDial 2019)
ACL